These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
163 related articles for article (PubMed ID: 22331666)
1. Improved phosphate removal by selective sludge discharge in aerobic granular sludge reactors. Bassin JP; Winkler MK; Kleerebezem R; Dezotti M; van Loosdrecht MC Biotechnol Bioeng; 2012 Aug; 109(8):1919-28. PubMed ID: 22331666 [TBL] [Abstract][Full Text] [Related]
2. Selective sludge removal in a segregated aerobic granular biomass system as a strategy to control PAO-GAO competition at high temperatures. Winkler MK; Bassin JP; Kleerebezem R; de Bruin LM; van den Brand TP; van Loosdrecht MC Water Res; 2011 May; 45(11):3291-9. PubMed ID: 21513967 [TBL] [Abstract][Full Text] [Related]
3. Upflow anaerobic sludge blanket reactor--a review. Bal AS; Dhagat NN Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675 [TBL] [Abstract][Full Text] [Related]
4. Microbial distribution of Accumulibacter spp. and Competibacter spp. in aerobic granules from a lab-scale biological nutrient removal system. Lemaire R; Yuan Z; Blackall LL; Crocetti GR Environ Microbiol; 2008 Feb; 10(2):354-63. PubMed ID: 18028415 [TBL] [Abstract][Full Text] [Related]
5. High-temperature EBPR process: the performance, analysis of PAOs and GAOs and the fine-scale population study of Candidatus "Accumulibacter phosphatis". Ong YH; Chua ASM; Fukushima T; Ngoh GC; Shoji T; Michinaka A Water Res; 2014 Nov; 64():102-112. PubMed ID: 25046374 [TBL] [Abstract][Full Text] [Related]
6. Model-based evaluation of competition between polyphosphate- and glycogen-accumulating organisms. Whang LM; Filipe CD; Park JK Water Res; 2007 Mar; 41(6):1312-24. PubMed ID: 17275874 [TBL] [Abstract][Full Text] [Related]
7. Simultaneous nitrogen and phosphate removal in aerobic granular sludge reactors operated at different temperatures. Bassin JP; Kleerebezem R; Dezotti M; van Loosdrecht MC Water Res; 2012 Aug; 46(12):3805-16. PubMed ID: 22591819 [TBL] [Abstract][Full Text] [Related]
8. Performance and microbial community composition dynamics of aerobic granular sludge from sequencing batch bubble column reactors operated at 20 degrees C, 30 degrees C, and 35 degrees C. Ebrahimi S; Gabus S; Rohrbach-Brandt E; Hosseini M; Rossi P; Maillard J; Holliger C Appl Microbiol Biotechnol; 2010 Jul; 87(4):1555-68. PubMed ID: 20461512 [TBL] [Abstract][Full Text] [Related]
9. Could polyphosphate-accumulating organisms (PAOs) be glycogen-accumulating organisms (GAOs)? Zhou Y; Pijuan M; Zeng RJ; Lu H; Yuan Z Water Res; 2008 May; 42(10-11):2361-8. PubMed ID: 18222522 [TBL] [Abstract][Full Text] [Related]
10. A comprehensive comparison of microbial communities between aerobic granular sludge and flocculent sludge for nutrient removal in full-scale wastewater treatment plants. Pincam T; Liu YQ; Booth A; Wang Y; Lan G; Zeng P Chemosphere; 2024 Aug; 362():142644. PubMed ID: 38901698 [TBL] [Abstract][Full Text] [Related]
11. Carbon mass balance and microbial ecology in a laboratory scale reactor achieving simultaneous sludge reduction and nutrient removal. Huang P; Li L; Kotay SM; Goel R Water Res; 2014 Apr; 53():153-67. PubMed ID: 24525065 [TBL] [Abstract][Full Text] [Related]
12. The effect of pH on the competition between polyphosphate-accumulating organisms and glycogen-accumulating organisms. Oehmen A; Teresa Vives M; Lu H; Yuan Z; Keller J Water Res; 2005 Sep; 39(15):3727-37. PubMed ID: 16098556 [TBL] [Abstract][Full Text] [Related]
13. Integration of anammox into the aerobic granular sludge process for main stream wastewater treatment at ambient temperatures. Winkler MK; Kleerebezem R; van Loosdrecht MC Water Res; 2012 Jan; 46(1):136-44. PubMed ID: 22094002 [TBL] [Abstract][Full Text] [Related]
14. Performance evaluation of various aerobic biological systems for the treatment of domestic wastewater at low temperatures. Sundaresan N; Philip L Water Sci Technol; 2008; 58(4):819-30. PubMed ID: 18776617 [TBL] [Abstract][Full Text] [Related]
15. Competition between polyphosphate and glycogen accumulating organisms in enhanced biological phosphorus removal systems with acetate and propionate as carbon sources. Oehmen A; Saunders AM; Vives MT; Yuan Z; Keller J J Biotechnol; 2006 May; 123(1):22-32. PubMed ID: 16293332 [TBL] [Abstract][Full Text] [Related]
16. Nutrient removal, microbial community and sludge settlement in anaerobic/aerobic sequencing batch reactors without enhanced biological phosphorus removal. Wu G; Rodgers M Water Sci Technol; 2010; 61(10):2433-41. PubMed ID: 20453315 [TBL] [Abstract][Full Text] [Related]
17. Comparison of acetate and propionate uptake by polyphosphate accumulating organisms and glycogen accumulating organisms. Oehmen A; Yuan Z; Blackall LL; Keller J Biotechnol Bioeng; 2005 Jul; 91(2):162-8. PubMed ID: 15892052 [TBL] [Abstract][Full Text] [Related]
18. Kinetic model of a granular sludge SBR: influences on nutrient removal. de Kreuk MK; Picioreanu C; Hosseini M; Xavier JB; van Loosdrecht MC Biotechnol Bioeng; 2007 Jul; 97(4):801-15. PubMed ID: 17177197 [TBL] [Abstract][Full Text] [Related]
19. Effect of pH reduction on polyphosphate- and glycogen-accumulating organisms in enhanced biological phosphorus removal processes. Fukushima T; Onuki M; Satoh H; Mino T Water Sci Technol; 2010; 62(6):1432-9. PubMed ID: 20861560 [TBL] [Abstract][Full Text] [Related]
20. Relationship between solid retention time and phosphorus removal in anaerobic-intermittent aeration process. Lee D; Kim M; Chung J J Biosci Bioeng; 2007 Apr; 103(4):338-44. PubMed ID: 17502275 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]