BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 22331891)

  • 1. Conversion of the chill susceptible fruit fly larva (Drosophila melanogaster) to a freeze tolerant organism.
    Koštál V; Šimek P; Zahradníčková H; Cimlová J; Štětina T
    Proc Natl Acad Sci U S A; 2012 Feb; 109(9):3270-4. PubMed ID: 22331891
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Arginine and proline applied as food additives stimulate high freeze tolerance in larvae of Drosophila melanogaster.
    Koštál V; Korbelová J; Poupardin R; Moos M; Šimek P
    J Exp Biol; 2016 Aug; 219(Pt 15):2358-67. PubMed ID: 27489218
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A mixture of innate cryoprotectants is key for freeze tolerance and cryopreservation of a drosophilid fly larva.
    Kučera L; Moos M; Štětina T; Korbelová J; Vodrážka P; Des Marteaux L; Grgac R; Hůla P; Rozsypal J; Faltus M; Šimek P; Sedlacek R; Koštál V
    J Exp Biol; 2022 Apr; 225(8):. PubMed ID: 35380003
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermal analysis of ice and glass transitions in insects that do and do not survive freezing.
    Rozsypal J; Moos M; Šimek P; Koštál V
    J Exp Biol; 2018 Apr; 221(Pt 7):. PubMed ID: 29496781
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hyperprolinemic larvae of the drosophilid fly, Chymomyza costata, survive cryopreservation in liquid nitrogen.
    Kostál V; Zahradnícková H; Šimek P
    Proc Natl Acad Sci U S A; 2011 Aug; 108(32):13041-6. PubMed ID: 21788482
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biochemistry of natural freeze tolerance in animals: molecular adaptations and applications to cryopreservation.
    Storey KB
    Biochem Cell Biol; 1990 Apr; 68(4):687-98. PubMed ID: 2222994
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biological ice nucleation and ice distribution in cold-hardy ectothermic animals.
    Lee RE; Costanzo JP
    Annu Rev Physiol; 1998; 60():55-72. PubMed ID: 9558454
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fat body disintegration after freezing stress is a consequence rather than a cause of freezing injury in larvae of Drosophila melanogaster.
    Rozsypal J; Toxopeus J; Berková P; Moos M; Šimek P; Koštál V
    J Insect Physiol; 2019; 115():12-19. PubMed ID: 30928312
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stabilization of insect cell membranes and soluble enzymes by accumulated cryoprotectants during freezing stress.
    Grgac R; Rozsypal J; Des Marteaux L; Štětina T; Koštál V
    Proc Natl Acad Sci U S A; 2022 Oct; 119(41):e2211744119. PubMed ID: 36191219
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mortality caused by extracellular freezing is associated with fragmentation of nuclear DNA in larval haemocytes of two drosophilid flies.
    Štětina T; Koštál V
    J Exp Biol; 2023 Nov; 226(21):. PubMed ID: 37846596
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evidence for a novel cryoprotective protein from freeze-tolerant larvae of the goldenrod gall fly Eurosta solidaginis.
    Pruitt NL; Moqueet N; Shapiro CA
    Cryobiology; 2007 Feb; 54(1):125-8. PubMed ID: 17266949
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Long-term cold acclimation extends survival time at 0°C and modifies the metabolomic profiles of the larvae of the fruit fly Drosophila melanogaster.
    Koštál V; Korbelová J; Rozsypal J; Zahradníčková H; Cimlová J; Tomčala A; Šimek P
    PLoS One; 2011; 6(9):e25025. PubMed ID: 21957472
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Supercooling and freezing as eco-physiological alternatives rather than mutually exclusive strategies: A case study in Pyrrhocoris apterus.
    Rozsypal J; Košťál V
    J Insect Physiol; 2018; 111():53-62. PubMed ID: 30393171
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Repeated freezing induces oxidative stress and reduces survival in the freeze-tolerant goldenrod gall fly, Eurosta solidaginis.
    Doelling AR; Griffis N; Williams JB
    J Insect Physiol; 2014 Aug; 67():20-7. PubMed ID: 24910457
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synchrotron x-ray visualisation of ice formation in insects during lethal and non-lethal freezing.
    Sinclair BJ; Gibbs AG; Lee WK; Rajamohan A; Roberts SP; Socha JJ
    PLoS One; 2009 Dec; 4(12):e8259. PubMed ID: 20011523
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Freezing induces a loss of freeze tolerance in an overwintering insect.
    Brown CL; Bale JS; Walters KF
    Proc Biol Sci; 2004 Jul; 271(1547):1507-11. PubMed ID: 15306323
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hemolymph metabolites and osmolality are tightly linked to cold tolerance of Drosophila species: a comparative study.
    Olsson T; MacMillan HA; Nyberg N; Staerk D; Malmendal A; Overgaard J
    J Exp Biol; 2016 Aug; 219(Pt 16):2504-13. PubMed ID: 27307488
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evidence for non-colligative function of small cryoprotectants in a freeze-tolerant insect.
    Toxopeus J; Koštál V; Sinclair BJ
    Proc Biol Sci; 2019 Mar; 286(1899):20190050. PubMed ID: 30890098
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Survival mechanisms of vertebrate ectotherms at subfreezing temperatures: applications in cryomedicine.
    Costanzo JP; Lee RE; DeVries AL; Wang T; Layne JR
    FASEB J; 1995 Mar; 9(5):351-8. PubMed ID: 7896003
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Freezing and cryoprotective dehydration in an Antarctic nematode (Panagrolaimus davidi) visualised using a freeze substitution technique.
    Wharton DA; Downes MF; Goodall G; Marshall CJ
    Cryobiology; 2005 Feb; 50(1):21-8. PubMed ID: 15710366
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.