BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

457 related articles for article (PubMed ID: 22331895)

  • 1. Transcriptional pausing coordinates folding of the aptamer domain and the expression platform of a riboswitch.
    Perdrizet GA; Artsimovitch I; Furman R; Sosnick TR; Pan T
    Proc Natl Acad Sci U S A; 2012 Feb; 109(9):3323-8. PubMed ID: 22331895
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mg(2+)-induced conformational changes in the btuB riboswitch from E. coli.
    Choudhary PK; Sigel RK
    RNA; 2014 Jan; 20(1):36-45. PubMed ID: 24243114
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A kissing loop is important for btuB riboswitch ligand sensing and regulatory control.
    Lussier A; Bastet L; Chauvier A; Lafontaine DA
    J Biol Chem; 2015 Oct; 290(44):26739-51. PubMed ID: 26370077
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Single-molecule FRET studies on the cotranscriptional folding of a thiamine pyrophosphate riboswitch.
    Uhm H; Kang W; Ha KS; Kang C; Hohng S
    Proc Natl Acad Sci U S A; 2018 Jan; 115(2):331-336. PubMed ID: 29279370
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Alkaline pH has an unexpected effect on transcriptional pausing during synthesis of the Escherichia coli pH-responsive riboswitch.
    Stephen C; Mishanina TV
    J Biol Chem; 2022 Sep; 298(9):102302. PubMed ID: 35934054
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ligand Modulates Cross-Coupling between Riboswitch Folding and Transcriptional Pausing.
    Widom JR; Nedialkov YA; Rai V; Hayes RL; Brooks CL; Artsimovitch I; Walter NG
    Mol Cell; 2018 Nov; 72(3):541-552.e6. PubMed ID: 30388413
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recognition of cyclic-di-GMP by a riboswitch conducts translational repression through masking the ribosome-binding site distant from the aptamer domain.
    Inuzuka S; Kakizawa H; Nishimura KI; Naito T; Miyazaki K; Furuta H; Matsumura S; Ikawa Y
    Genes Cells; 2018 Jun; 23(6):435-447. PubMed ID: 29693296
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interplay of 'induced fit' and preorganization in the ligand induced folding of the aptamer domain of the guanine binding riboswitch.
    Noeske J; Buck J; Fürtig B; Nasiri HR; Schwalbe H; Wöhnert J
    Nucleic Acids Res; 2007; 35(2):572-83. PubMed ID: 17175531
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pausing guides RNA folding to populate transiently stable RNA structures for riboswitch-based transcription regulation.
    Steinert H; Sochor F; Wacker A; Buck J; Helmling C; Hiller F; Keyhani S; Noeske J; Grimm S; Rudolph MM; Keller H; Mooney RA; Landick R; Suess B; Fürtig B; Wöhnert J; Schwalbe H
    Elife; 2017 May; 6():. PubMed ID: 28541183
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dual-acting riboswitch control of translation initiation and mRNA decay.
    Caron MP; Bastet L; Lussier A; Simoneau-Roy M; Massé E; Lafontaine DA
    Proc Natl Acad Sci U S A; 2012 Dec; 109(50):E3444-53. PubMed ID: 23169642
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Riboswitch and small RNAs modulate btuB translation initiation in Escherichia coli and trigger distinct mRNA regulatory mechanisms.
    Bastet L; Korepanov AP; Jagodnik J; Grondin JP; Lamontagne AM; Guillier M; Lafontaine DA
    Nucleic Acids Res; 2024 Jun; 52(10):5852-5865. PubMed ID: 38742638
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cooperative and directional folding of the preQ1 riboswitch aptamer domain.
    Feng J; Walter NG; Brooks CL
    J Am Chem Soc; 2011 Mar; 133(12):4196-9. PubMed ID: 21375305
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of a hairpin-stabilized pause in the
    Chauvier A; Nadon JF; Grondin JP; Lamontagne AM; Lafontaine DA
    RNA Biol; 2019 Aug; 16(8):1066-1073. PubMed ID: 31081713
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure-guided mutational analysis of gene regulation by the Bacillus subtilis pbuE adenine-responsive riboswitch in a cellular context.
    Marcano-Velázquez JG; Batey RT
    J Biol Chem; 2015 Feb; 290(7):4464-75. PubMed ID: 25550163
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Secondary structural entropy in RNA switch (Riboswitch) identification.
    Manzourolajdad A; Arnold J
    BMC Bioinformatics; 2015 Apr; 16():133. PubMed ID: 25928324
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The dynamic nature of RNA as key to understanding riboswitch mechanisms.
    Haller A; Soulière MF; Micura R
    Acc Chem Res; 2011 Dec; 44(12):1339-48. PubMed ID: 21678902
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of a preQ1 riboswitch aptamer in metabolite-bound and free states with implications for gene regulation.
    Jenkins JL; Krucinska J; McCarty RM; Bandarian V; Wedekind JE
    J Biol Chem; 2011 Jul; 286(28):24626-37. PubMed ID: 21592962
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ligand-induced folding of the adenosine deaminase A-riboswitch and implications on riboswitch translational control.
    Rieder R; Lang K; Graber D; Micura R
    Chembiochem; 2007 May; 8(8):896-902. PubMed ID: 17440909
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Linking aptamer-ligand binding and expression platform folding in riboswitches: prospects for mechanistic modeling and design.
    Aboul-ela F; Huang W; Abd Elrahman M; Boyapati V; Li P
    Wiley Interdiscip Rev RNA; 2015; 6(6):631-50. PubMed ID: 26361734
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Requirements for efficient ligand-gated co-transcriptional switching in designed variants of the B. subtilis pbuE adenine-responsive riboswitch in E. coli.
    Drogalis LK; Batey RT
    PLoS One; 2020; 15(12):e0243155. PubMed ID: 33259551
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.