These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 22332367)

  • 1. [Biocatalytic synthesis of pharmacology perspective stigmast-4-en-3-one using Rhodococci cells].
    Nogovitsina EM; Grishko VV; Ivshina IB
    Bioorg Khim; 2011; 37(5):697-704. PubMed ID: 22332367
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Bioconversion of beta-sitosterol and its complex esters by Rhodococcus actinobacteria].
    Ivshina IB; Grishko VV; Nogovitsina EM; Kukina TP; Tolstikov GA
    Prikl Biokhim Mikrobiol; 2005; 41(6):626-33. PubMed ID: 16358751
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of 24- and 28-hydroxylated intermediates in the metabolism of beta-sitosterol in the insect Tenebrio molitor.
    Nicotra F; Ronchetti F; Russo G; Toma L
    Biochem J; 1979 Dec; 183(3):495-9. PubMed ID: 540027
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Oxidative biotransformation of thioanisole by Rhodococcus rhodochrous IEGM 66 cells].
    El'kin AA; Grishko VV; Ivshina IB
    Prikl Biokhim Mikrobiol; 2010; 46(6):637-43. PubMed ID: 21261073
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Highly chemoselective and efficient production of 2,6-difluorobenzamide using Rhodococcus ruber CGMCC3090 resting cells.
    Tang R; Shen Y; Wang M; Zhai Y; Gao Q
    J Biosci Bioeng; 2017 Dec; 124(6):641-646. PubMed ID: 28734701
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cholesterol oxidase from Rhodococcus erythropolis with high specificity toward β-cholestanol and pytosterols.
    Doukyu N; Ishikawa M
    PLoS One; 2020; 15(10):e0241126. PubMed ID: 33104755
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bioconversion of ecotoxic dehydroabietic acid using Rhodococcus actinobacteria.
    Cheremnykh KM; Luchnikova NA; Grishko VV; Ivshina IB
    J Hazard Mater; 2018 Mar; 346():103-112. PubMed ID: 29253749
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biotransformation of phytosterols under aerobic conditions.
    Dykstra CM; Giles HD; Banerjee S; Pavlostathis SG
    Water Res; 2014 Jul; 58():71-81. PubMed ID: 24747138
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improved enzyme-mediated synthesis and supramolecular self-assembly of naturally occurring conjugates of β-sitosterol.
    Wimmerová M; Siglerová V; Šaman D; Šlouf M; Kaletová E; Wimmer Z
    Steroids; 2017 Jan; 117():38-43. PubMed ID: 27648857
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rhodococcus bacteria as a promising source of oils from olive mill wastes.
    Herrero OM; Villalba MS; Lanfranconi MP; Alvarez HM
    World J Microbiol Biotechnol; 2018 Jul; 34(8):114. PubMed ID: 29992446
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rhodococcus strains as source for ene-reductase activity.
    Chen BS; Médici R; van der Helm MP; van Zwet Y; Gjonaj L; van der Geest R; Otten LG; Hanefeld U
    Appl Microbiol Biotechnol; 2018 Jul; 102(13):5545-5556. PubMed ID: 29705954
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Response of Rhodococcus cerastii IEGM 1278 to toxic effects of ibuprofen.
    Ivshina IB; Tyumina EA; Bazhutin GA; Vikhareva EV
    PLoS One; 2021; 16(11):e0260032. PubMed ID: 34793540
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microbial transformation of beta-sitosterol and stigmasterol into 26-oxygenated derivatives.
    Ambrus G; Ilköy E; Jekkel A; Horváth G; Böcskei Z
    Steroids; 1995 Sep; 60(9):621-5. PubMed ID: 8545851
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cholesterol oxidase with high catalytic activity from Pseudomonas aeruginosa: Screening, molecular genetic analysis, expression and characterization.
    Doukyu N; Nihei S
    J Biosci Bioeng; 2015 Jul; 120(1):24-30. PubMed ID: 25573142
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biodegradation of 7-Ketocholesterol by Rhodococcus erythropolis MTCC 3951: Process optimization and enzymatic insights.
    Ghosh S; Khare SK
    Chem Phys Lipids; 2017 Oct; 207(Pt B):253-259. PubMed ID: 28571786
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Selection of Biodegrading Phytosterol Strains.
    Mondaca MA; Vidal M; Chamorro S; Vidal G
    Methods Mol Biol; 2017; 1645():143-150. PubMed ID: 28710625
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The degradation of beta-sitosterol by Pseudomonas sp. NCIB 10590 under aerobic conditions.
    Owen RW; Mason AN; Bilton RF
    J Steroid Biochem; 1985 Sep; 23(3):327-32. PubMed ID: 4046606
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Alkanotrophic Rhodococcus ruber as a biosurfactant producer.
    Philp JC; Kuyukina MS; Ivshina IB; Dunbar SA; Christofi N; Lang S; Wray V
    Appl Microbiol Biotechnol; 2002 Jul; 59(2-3):318-24. PubMed ID: 12111164
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Chemical constituents of roots, rhizomes and stems of Amomum villosum Lour].
    Fan X; Du YC; Wei JX
    Zhongguo Zhong Yao Za Zhi; 1994 Dec; 19(12):734-6, 762. PubMed ID: 7718134
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biocatalysis of Steroids with Mycobacterium sp. in Aqueous and Organic Media.
    de Carvalho CCCR; Fernandes P
    Methods Mol Biol; 2017; 1645():313-320. PubMed ID: 28710638
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.