These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 22332598)

  • 1. Membrane applications in functional foods and nutraceuticals.
    Akin O; Temelli F; Köseoğlu S
    Crit Rev Food Sci Nutr; 2012; 52(4):347-71. PubMed ID: 22332598
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanofiltration and Tight Ultrafiltration Membranes for the Recovery of Polyphenols from Agro-Food By-Products.
    Cassano A; Conidi C; Ruby-Figueroa R; Castro-Muñoz R
    Int J Mol Sci; 2018 Jan; 19(2):. PubMed ID: 29364859
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phenolic compounds recovered from agro-food by-products using membrane technologies: An overview.
    Castro-Muñoz R; Yáñez-Fernández J; Fíla V
    Food Chem; 2016 Dec; 213():753-762. PubMed ID: 27451244
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Valorisation of tuna processing waste biomass for recovery of functional and antioxidant peptides using enzymatic hydrolysis and membrane fractionation process.
    Saidi S; Ben Amar R
    Environ Sci Pollut Res Int; 2016 Oct; 23(20):21070-21085. PubMed ID: 27491418
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Selective separation of peptides contained in a rapeseed (Brassica campestris L.) protein hydrolysate using UF/NF membranes.
    Tessier B; Harscoat-Schiavo C; Marc I
    J Agric Food Chem; 2006 May; 54(10):3578-84. PubMed ID: 19127728
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Separation of Biologically Active Compounds by Membrane Operations.
    Zhu X; Bai R
    Curr Pharm Des; 2017; 23(2):218-230. PubMed ID: 27799041
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fractionation of gliadin hydrolysates in water-ethanol by ultrafiltration with modified or unmodified membranes.
    Bérot S; Chaufer B; Basso Y; Legay C; Popineau Y
    Biotechnol Bioeng; 1999 Mar; 62(6):649-58. PubMed ID: 9951523
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electro-membrane filtration for the selective isolation of bioactive peptides from an alpha(s2)-casein hydrolysate.
    Bargeman G; Houwing J; Recio I; Koops GH; van der Horst C
    Biotechnol Bioeng; 2002 Dec; 80(6):599-609. PubMed ID: 12378601
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Membrane Technology for Valorization of Mango Peel Extracts.
    Macedo A; Gomes T; Ribeiro C; Moldão-Martins M; Duarte E; Alves VD
    Foods; 2022 Aug; 11(17):. PubMed ID: 36076767
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultrafiltration and nanofiltration membrane fouling by natural organic matter: Mechanisms and mitigation by pre-ozonation and pH.
    Yu W; Liu T; Crawshaw J; Liu T; Graham N
    Water Res; 2018 Aug; 139():353-362. PubMed ID: 29665507
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Membrane processes and devices for separation of bioactive peptides.
    Bazinet L; Firdaous L
    Recent Pat Biotechnol; 2009; 3(1):61-72. PubMed ID: 19149724
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultrafiltration/nanofiltration for the tertiary treatment of leather industry effluents.
    Streit KF; Ferreira JZ; Bernardes AM; Norberta De Pinho M
    Environ Sci Technol; 2009 Dec; 43(24):9130-5. PubMed ID: 20000502
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Combination of Aqueous Extraction and Polymeric Membranes as a Sustainable Process for the Recovery of Polyphenols from Olive Mill Solid Wastes.
    Conidi C; Egea-Corbacho A; Cassano A
    Polymers (Basel); 2019 Nov; 11(11):. PubMed ID: 31726794
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Preparation of positively charged composite nanofiltration membranes by quaternization crosslinking for precise molecular and ionic separations.
    Fang C; Sun J; Zhang B; Sun Y; Zhu L; Matsuyama H
    J Colloid Interface Sci; 2018 Dec; 531():168-180. PubMed ID: 30031259
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Concentration and Fractionation of Polyphenols by Membrane Operations.
    Tylkowski B; Nowak M; Tsibranska I; Trojanowska A; Marciniak L; Valls RG; Gumi T; Giamberini M; Jastrząb R
    Curr Pharm Des; 2017; 23(2):231-241. PubMed ID: 27774906
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bioactive Peptides and Dietary Polyphenols: Two Sides of the Same Coin.
    Pérez-Gregorio R; Soares S; Mateus N; de Freitas V
    Molecules; 2020 Jul; 25(15):. PubMed ID: 32751126
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recent developments of organic solvent resistant materials for membrane separations.
    Ren D; Ren S; Lin Y; Xu J; Wang X
    Chemosphere; 2021 May; 271():129425. PubMed ID: 33445020
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Combined coagulation-disk filtration process as a pretreatment of ultrafiltration and reverse osmosis membrane for wastewater reclamation: an autopsy study of a pilot plant.
    Chon K; Kim SJ; Moon J; Cho J
    Water Res; 2012 Apr; 46(6):1803-16. PubMed ID: 22310806
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Integration of polymeric membranes with microfluidic networks for bioanalytical applications.
    Wang PC; DeVoe DL; Lee CS
    Electrophoresis; 2001 Oct; 22(18):3857-67. PubMed ID: 11700714
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of ultra- and nanofiltration for refining soluble products from rice husk xylan.
    Vegas R; Moure A; Domínguez H; Parajó JC; Alvarez JR; Luque S
    Bioresour Technol; 2008 Sep; 99(13):5341-51. PubMed ID: 18158238
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.