These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 22332718)

  • 21. Self-assembled large-area annular cavity arrays with tunable cylindrical surface plasmons for sensing.
    Ni H; Wang M; Shen T; Zhou J
    ACS Nano; 2015 Feb; 9(2):1913-25. PubMed ID: 25639937
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Tunable SERS Platforms from Small Nanoparticle 3D Superlattices: A Comparison between Gold, Silver, and Copper.
    Chapus L; Aubertin P; Joiret S; Lucas IT; Maisonhaute E; Courty A
    Chemphyschem; 2017 Nov; 18(21):3066-3075. PubMed ID: 28862382
    [TBL] [Abstract][Full Text] [Related]  

  • 23. DNA-directed gold nanodimers with tailored ensemble surface-enhanced Raman scattering properties.
    Lan X; Chen Z; Lu X; Dai G; Ni W; Wang Q
    ACS Appl Mater Interfaces; 2013 Nov; 5(21):10423-7. PubMed ID: 24116932
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Optofluidic microsystem with quasi-3 dimensional gold plasmonic nanostructure arrays for online sensitive and reproducible SERS detection.
    Deng Y; Idso MN; Galvan DD; Yu Q
    Anal Chim Acta; 2015 Mar; 863():41-8. PubMed ID: 25732311
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Controllable nanofabrication of aggregate-like nanoparticle substrates and evaluation for surface-enhanced Raman spectroscopy.
    Wells SM; Retterer SD; Oran JM; Sepaniak MJ
    ACS Nano; 2009 Dec; 3(12):3845-53. PubMed ID: 19911835
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Nanoimprinted optical fibres: Biotemplated nanostructures for SERS sensing.
    Kostovski G; White DJ; Mitchell A; Austin MW; Stoddart PR
    Biosens Bioelectron; 2009 Jan; 24(5):1531-5. PubMed ID: 19084390
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Durable plasmonic cap arrays on flexible substrate with real-time optical tunability for high-fidelity SERS devices.
    Kang H; Heo CJ; Jeon HC; Lee SY; Yang SM
    ACS Appl Mater Interfaces; 2013 Jun; 5(11):4569-74. PubMed ID: 23675608
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Large-scale Au nanoparticle cluster arrays with tunable particle numbers evolved from colloidal lithography.
    Fang L; Liu X; Xiang S; Liu W; Shen H; Li Z; Zhang K; Song W; Yang B
    Nanotechnology; 2018 Oct; 29(40):405301. PubMed ID: 30010616
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Engineering Electromagnetic Hot-Spots in Nanoparticle Cluster Arrays on Reflective Substrates for Highly Sensitive Detection of (Bio)molecular Analytes.
    Rastogi R; Dogbe Foli EA; Vincent R; Adam PM; Krishnamoorthy S
    ACS Appl Mater Interfaces; 2021 Jul; 13(28):32653-32661. PubMed ID: 34242017
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Characterization of the surface enhanced raman scattering (SERS) of bacteria.
    Premasiri WR; Moir DT; Klempner MS; Krieger N; Jones G; Ziegler LD
    J Phys Chem B; 2005 Jan; 109(1):312-20. PubMed ID: 16851017
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Recyclable three-dimensional Ag nanoparticle-decorated TiO2 nanorod arrays for surface-enhanced Raman scattering.
    Fang H; Zhang CX; Liu L; Zhao YM; Xu HJ
    Biosens Bioelectron; 2015 Feb; 64():434-41. PubMed ID: 25282397
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Tailored surface-enhanced Raman nanopillar arrays fabricated by laser-assisted replication for biomolecular detection using organic semiconductor lasers.
    Liu X; Lebedkin S; Besser H; Pfleging W; Prinz S; Wissmann M; Schwab PM; Nazarenko I; Guttmann M; Kappes MM; Lemmer U
    ACS Nano; 2015 Jan; 9(1):260-70. PubMed ID: 25514354
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Self-assembly of Au nanoparticles on PMMA template as flexible, transparent, and highly active SERS substrates.
    Zhong LB; Yin J; Zheng YM; Liu Q; Cheng XX; Luo FH
    Anal Chem; 2014 Jul; 86(13):6262-7. PubMed ID: 24873535
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Optical fibre SERS sensors.
    Stoddart PR; White DJ
    Anal Bioanal Chem; 2009 Aug; 394(7):1761-74. PubMed ID: 19407993
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Self-assembled quasi-hexagonal arrays of gold nanoparticles with small gaps for surface-enhanced Raman spectroscopy.
    Gürdal E; Dickreuter S; Noureddine F; Bieschke P; Kern DP; Fleischer M
    Beilstein J Nanotechnol; 2018; 9():1977-1985. PubMed ID: 30116689
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Convenient formation of nanoparticle aggregates on microfluidic chips for highly sensitive SERS detection of biomolecules.
    Zhou J; Ren K; Zhao Y; Dai W; Wu H
    Anal Bioanal Chem; 2012 Feb; 402(4):1601-9. PubMed ID: 22127578
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Gold nanolenses generated by laser ablation-efficient enhancing structure for surface enhanced Raman scattering analytics and sensing.
    Kneipp J; Li X; Sherwood M; Panne U; Kneipp H; Stockman MI; Kneipp K
    Anal Chem; 2008 Jun; 80(11):4247-51. PubMed ID: 18439029
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Large-area plasmonic hot-spot arrays: sub-2 nm interparticle separations with plasma-enhanced atomic layer deposition of Ag on periodic arrays of Si nanopillars.
    Caldwell JD; Glembocki OJ; Bezares FJ; Kariniemi MI; Niinistö JT; Hatanpää TT; Rendell RW; Ukaegbu M; Ritala MK; Prokes SM; Hosten CM; Leskelä MA; Kasica R
    Opt Express; 2011 Dec; 19(27):26056-64. PubMed ID: 22274194
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Silicon nanohybrid-based surface-enhanced Raman scattering sensors.
    Wang H; Jiang X; Lee ST; He Y
    Small; 2014 Nov; 10(22):4455-68. PubMed ID: 25243935
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Surface-enhanced-Raman-scattering-inducing nanoprobe for spectrochemical analysis.
    Stokes DL; Chi Z; Vo-Dinh T
    Appl Spectrosc; 2004 Mar; 58(3):292-8. PubMed ID: 15035709
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.