These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
221 related articles for article (PubMed ID: 22332810)
1. Enhanced tumor treatment using biofunctional indocyanine green-containing nanostructure by intratumoral or intravenous injection. Zheng X; Zhou F; Wu B; Chen WR; Xing D Mol Pharm; 2012 Mar; 9(3):514-22. PubMed ID: 22332810 [TBL] [Abstract][Full Text] [Related]
2. Indocyanine green-containing nanostructure as near infrared dual-functional targeting probes for optical imaging and photothermal therapy. Zheng X; Xing D; Zhou F; Wu B; Chen WR Mol Pharm; 2011 Apr; 8(2):447-56. PubMed ID: 21197955 [TBL] [Abstract][Full Text] [Related]
3. Indocyanine green loaded SPIO nanoparticles with phospholipid-PEG coating for dual-modal imaging and photothermal therapy. Ma Y; Tong S; Bao G; Gao C; Dai Z Biomaterials; 2013 Oct; 34(31):7706-14. PubMed ID: 23871538 [TBL] [Abstract][Full Text] [Related]
4. Hybrid polypeptide micelles loading indocyanine green for tumor imaging and photothermal effect study. Wu L; Fang S; Shi S; Deng J; Liu B; Cai L Biomacromolecules; 2013 Sep; 14(9):3027-33. PubMed ID: 23941524 [TBL] [Abstract][Full Text] [Related]
5. Magnetite nanocluster@poly(dopamine)-PEG@ indocyanine green nanobead with magnetic field-targeting enhanced MR imaging and photothermal therapy in vivo. Wu M; Wang Q; Zhang D; Liao N; Wu L; Huang A; Liu X Colloids Surf B Biointerfaces; 2016 May; 141():467-475. PubMed ID: 26896652 [TBL] [Abstract][Full Text] [Related]
6. ICG-Loaded PEGylated BSA-Silver Nanoparticles for Effective Photothermal Cancer Therapy. Park T; Lee S; Amatya R; Cheong H; Moon C; Kwak HD; Min KA; Shin MC Int J Nanomedicine; 2020; 15():5459-5471. PubMed ID: 32801700 [TBL] [Abstract][Full Text] [Related]
8. A new NIR-triggered doxorubicin and photosensitizer indocyanine green co-delivery system for enhanced multidrug resistant cancer treatment through simultaneous chemo/photothermal/photodynamic therapy. Yu Y; Zhang Z; Wang Y; Zhu H; Li F; Shen Y; Guo S Acta Biomater; 2017 Sep; 59():170-180. PubMed ID: 28629893 [TBL] [Abstract][Full Text] [Related]
9. Folate-receptor-targeted laser-activable poly(lactide- Liu F; Chen Y; Li Y; Guo Y; Cao Y; Li P; Wang Z; Gong Y; Ran H Int J Nanomedicine; 2018; 13():5139-5158. PubMed ID: 30233177 [TBL] [Abstract][Full Text] [Related]
10. Short PEG-linkers improve the performance of targeted, activatable monoclonal antibody-indocyanine green optical imaging probes. Sano K; Nakajima T; Miyazaki K; Ohuchi Y; Ikegami T; Choyke PL; Kobayashi H Bioconjug Chem; 2013 May; 24(5):811-6. PubMed ID: 23600922 [TBL] [Abstract][Full Text] [Related]
11. Near-infrared photoimmunotherapy of pancreatic cancer using an indocyanine green-labeled anti-tissue factor antibody. Aung W; Tsuji AB; Sugyo A; Takashima H; Yasunaga M; Matsumura Y; Higashi T World J Gastroenterol; 2018 Dec; 24(48):5491-5504. PubMed ID: 30622378 [TBL] [Abstract][Full Text] [Related]
12. A novel ICG-labeled cyclic TMTP1 peptide dimer for sensitive tumor imaging and enhanced photothermal therapy in vivo. Wang L; Zhang D; Li J; Li F; Wei R; Jiang G; Xu H; Wang X; Zhou Y; Xi L Eur J Med Chem; 2022 Jan; 227():113935. PubMed ID: 34731764 [TBL] [Abstract][Full Text] [Related]
13. Water-Responsive Hybrid Nanoparticles Codelivering ICG and DOX Effectively Treat Breast Cancer via Hyperthermia-aided DOX Functionality and Drug Penetration. Liu X; Wang C; Ma H; Yu F; Hu F; Yuan H Adv Healthc Mater; 2019 Apr; 8(8):e1801486. PubMed ID: 30856296 [TBL] [Abstract][Full Text] [Related]
14. A Dual-Model Imaging Theragnostic System Based on Mesoporous Silica Nanoparticles for Enhanced Cancer Phototherapy. Huang C; Zhang Z; Guo Q; Zhang L; Fan F; Qin Y; Wang H; Zhou S; Ou-Yang W; Sun H; Leng X; Pan X; Kong D; Zhang L; Zhu D Adv Healthc Mater; 2019 Oct; 8(19):e1900840. PubMed ID: 31512403 [TBL] [Abstract][Full Text] [Related]
15. Molecular imaging-guided photothermal/photodynamic therapy against tumor by iRGD-modified indocyanine green nanoparticles. Yan F; Wu H; Liu H; Deng Z; Liu H; Duan W; Liu X; Zheng H J Control Release; 2016 Feb; 224():217-228. PubMed ID: 26739551 [TBL] [Abstract][Full Text] [Related]
16. Stabilization of indocyanine green dye in polymeric micelles for NIR-II fluorescence imaging and cancer treatment. Yeroslavsky G; Umezawa M; Okubo K; Nigoghossian K; Thi Kim Dung D; Miyata K; Kamimura M; Soga K Biomater Sci; 2020 Apr; 8(8):2245-2254. PubMed ID: 32129330 [TBL] [Abstract][Full Text] [Related]
17. A near infrared-modulated thermosensitive hydrogel for stabilization of indocyanine green and combinatorial anticancer phototherapy. Liu C; Ruan C; Shi R; Jiang BP; Ji S; Shen XC Biomater Sci; 2019 Mar; 7(4):1705-1715. PubMed ID: 30758351 [TBL] [Abstract][Full Text] [Related]
18. Encapsulation of indocyanine green into cell membrane capsules for photothermal cancer therapy. Sheng G; Chen Y; Han L; Huang Y; Liu X; Li L; Mao Z Acta Biomater; 2016 Oct; 43():251-261. PubMed ID: 27422197 [TBL] [Abstract][Full Text] [Related]
19. Micellar formulation of indocyanine green for phototherapy of melanoma. Mundra V; Peng Y; Rana S; Natarajan A; Mahato RI J Control Release; 2015 Dec; 220(Pt A):130-140. PubMed ID: 26482083 [TBL] [Abstract][Full Text] [Related]