BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 22332941)

  • 1. Transverse chemotactic migration of bacteria from high to low permeability regions in a dual permeability microfluidic device.
    Singh R; Olson MS
    Environ Sci Technol; 2012 Mar; 46(6):3188-95. PubMed ID: 22332941
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bacterial chemotaxis transverse to axial flow in a microfluidic channel.
    Lanning LM; Ford RM; Long T
    Biotechnol Bioeng; 2008 Jul; 100(4):653-63. PubMed ID: 18306417
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bacterial chemotaxis toward a NAPL source within a pore-scale microfluidic chamber.
    Wang X; Long T; Ford RM
    Biotechnol Bioeng; 2012 Jul; 109(7):1622-8. PubMed ID: 22252781
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transverse mixing enhancement due to bacterial random motility in porous microfluidic devices.
    Singh R; Olson MS
    Environ Sci Technol; 2011 Oct; 45(20):8780-7. PubMed ID: 21877703
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced Retention of Chemotactic Bacteria in a Pore Network with Residual NAPL Contamination.
    Wang X; Lanning LM; Ford RM
    Environ Sci Technol; 2016 Jan; 50(1):165-72. PubMed ID: 26633578
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chemotaxis increases vertical migration and apparent transverse dispersion of bacteria in a bench-scale microcosm.
    Strobel KL; McGowan S; Bauer RD; Griebler C; Liu J; Ford RM
    Biotechnol Bioeng; 2011 Sep; 108(9):2070-7. PubMed ID: 21495010
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhanced transverse migration of bacteria by chemotaxis in a porous T-sensor.
    Long T; Ford RM
    Environ Sci Technol; 2009 Mar; 43(5):1546-52. PubMed ID: 19350933
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A three-channel microfluidic device for generating static linear gradients and its application to the quantitative analysis of bacterial chemotaxis.
    Diao J; Young L; Kim S; Fogarty EA; Heilman SM; Zhou P; Shuler ML; Wu M; DeLisa MP
    Lab Chip; 2006 Mar; 6(3):381-8. PubMed ID: 16511621
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microfluidic device for analyzing preferential chemotaxis and chemoreceptor sensitivity of bacterial cells toward carbon sources.
    Kim M; Kim SH; Lee SK; Kim T
    Analyst; 2011 Aug; 136(16):3238-43. PubMed ID: 21716994
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chemotaxis along local chemical gradients enhanced bacteria dispersion and PAH bioavailability in a heterogenous porous medium.
    Gao B; Wang X; Ford RM
    Sci Total Environ; 2023 Feb; 859(Pt 1):160004. PubMed ID: 36368405
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A hydrogel-based microfluidic device for the studies of directed cell migration.
    Cheng SY; Heilman S; Wasserman M; Archer S; Shuler ML; Wu M
    Lab Chip; 2007 Jun; 7(6):763-9. PubMed ID: 17538719
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transverse bacterial migration induced by chemotaxis in a packed column with structured physical heterogeneity.
    Wang M; Ford RM
    Environ Sci Technol; 2009 Aug; 43(15):5921-7. PubMed ID: 19731698
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microfluidic monitoring of Pseudomonas aeruginosa chemotaxis under the continuous chemical gradient.
    Jeong HH; Lee SH; Kim JM; Kim HE; Kim YG; Yoo JY; Chang WS; Lee CS
    Biosens Bioelectron; 2010 Oct; 26(2):351-6. PubMed ID: 20810268
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bacterial chemotaxis on SlipChip.
    Shen C; Xu P; Huang Z; Cai D; Liu SJ; Du W
    Lab Chip; 2014 Aug; 14(16):3074-80. PubMed ID: 24968180
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modeling Transport of Chemotactic Bacteria in Granular Media with Distributed Contaminant Sources.
    Adadevoh JST; Ostvar S; Wood B; Ford RM
    Environ Sci Technol; 2017 Dec; 51(24):14192-14198. PubMed ID: 29164871
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A parallel diffusion-based microfluidic device for bacterial chemotaxis analysis.
    Si G; Yang W; Bi S; Luo C; Ouyang Q
    Lab Chip; 2012 Apr; 12(7):1389-94. PubMed ID: 22361931
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A microfluidic device for quantifying bacterial chemotaxis in stable concentration gradients.
    Englert DL; Manson MD; Jayaraman A
    J Vis Exp; 2010 Apr; (38):. PubMed ID: 20404797
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microfluidic techniques for the analysis of bacterial chemotaxis.
    Englert DL; Jayaraman A; Manson MD
    Methods Mol Biol; 2009; 571():1-23. PubMed ID: 19763956
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Investigation of bacterial chemotaxis in flow-based microfluidic devices.
    Englert DL; Manson MD; Jayaraman A
    Nat Protoc; 2010 May; 5(5):864-72. PubMed ID: 20431532
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A mathematical model for Escherichia coli chemotaxis to competing stimuli.
    Middlebrooks SA; Zhao X; Ford RM; Cummings PT
    Biotechnol Bioeng; 2021 Dec; 118(12):4678-4686. PubMed ID: 34463958
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.