These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 22332996)

  • 1. Theoretical verification of nonthermal microwave effects on intramolecular reactions.
    Kanno M; Nakamura K; Kanai E; Hoki K; Kono H; Tanaka M
    J Phys Chem A; 2012 Mar; 116(9):2177-83. PubMed ID: 22332996
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nonthermal microwave effects revisited: on the importance of internal temperature monitoring and agitation in microwave chemistry.
    Herrero MA; Kremsner JM; Kappe CO
    J Org Chem; 2008 Jan; 73(1):36-47. PubMed ID: 18062704
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microwave-assisted asymmetric organocatalysis. A probe for nonthermal microwave effects and the concept of simultaneous cooling.
    Hosseini M; Stiasni N; Barbieri V; Kappe CO
    J Org Chem; 2007 Feb; 72(4):1417-24. PubMed ID: 17288387
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Investigating the existence of nonthermal/specific microwave effects using silicon carbide heating elements as power modulators.
    Razzaq T; Kremsner JM; Kappe CO
    J Org Chem; 2008 Aug; 73(16):6321-9. PubMed ID: 18613726
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microwaves in organic synthesis. Thermal and non-thermal microwave effects.
    de la Hoz A; Díaz-Ortiz A; Moreno A
    Chem Soc Rev; 2005 Feb; 34(2):164-78. PubMed ID: 15672180
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dissecting competitive mechanisms: thionation vs. cycloaddition in the reaction of thioisomunchnones with isothiocyanates under microwave irradiation.
    Cantillo D; Avalos M; Babiano R; Cintas P; Jiménez JL; Light ME; Palacios JC
    J Org Chem; 2009 Oct; 74(20):7644-50. PubMed ID: 19775139
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Newman-Kwart rearrangement: a microwave kinetic study.
    Gilday JP; Lenden P; Moseley JD; Cox BG
    J Org Chem; 2008 Apr; 73(8):3130-4. PubMed ID: 18358042
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Unraveling the mysteries of microwave chemistry using silicon carbide reactor technology.
    Kappe CO
    Acc Chem Res; 2013 Jul; 46(7):1579-87. PubMed ID: 23463987
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of microwave and radio frequency electromagnetic fields on lichens.
    Urech M; Eicher B; Siegenthaler J
    Bioelectromagnetics; 1996; 17(4):327-34. PubMed ID: 8891192
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nonthermal effect of microwave irradiation in nonaqueous enzymatic esterification.
    Wan HD; Sun SY; Hu XY; Xia YM
    Appl Biochem Biotechnol; 2012 Mar; 166(6):1454-62. PubMed ID: 22262019
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microwave-assisted chemistry: synthetic applications for rapid assembly of nanomaterials and organics.
    Gawande MB; Shelke SN; Zboril R; Varma RS
    Acc Chem Res; 2014 Apr; 47(4):1338-48. PubMed ID: 24666323
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Silicon carbide passive heating elements in microwave-assisted organic synthesis.
    Kremsner JM; Kappe CO
    J Org Chem; 2006 Jun; 71(12):4651-8. PubMed ID: 16749800
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kinetic resolution of rac-1-phenylethanol with immobilized lipases: a critical comparison of microwave and conventional heating protocols.
    de Souza RO; Antunes OA; Kroutil W; Kappe CO
    J Org Chem; 2009 Aug; 74(16):6157-62. PubMed ID: 19601570
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluating the potential nonthermal microwave effects of microwave-assisted proteolytic reactions.
    Reddy PM; Huang YS; Chen CT; Chang PC; Ho YP
    J Proteomics; 2013 Mar; 80():160-70. PubMed ID: 23352896
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An investigation of wall effects in microwave-assisted ring-closing metathesis and cyclotrimerization reactions.
    Dallinger D; Irfan M; Suljanovic A; Kappe CO
    J Org Chem; 2010 Aug; 75(15):5278-88. PubMed ID: 20670032
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Understanding microwave heating effects in single mode type cavities-theory and experiment.
    Robinson J; Kingman S; Irvine D; Licence P; Smith A; Dimitrakis G; Obermayer D; Kappe CO
    Phys Chem Chem Phys; 2010 May; 12(18):4750-8. PubMed ID: 20428555
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cell replication rates and processes concerning antibody production in vitro are not influenced by 2.45-GHz microwaves at physiologically normal temperatures.
    van Dorp R; Marani E; Boon ME
    Methods; 1998 Jun; 15(2):151-9. PubMed ID: 9654462
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The molecularity of the Newman-Kwart rearrangement.
    Burns M; Lloyd-Jones GC; Moseley JD; Renny JS
    J Org Chem; 2010 Oct; 75(19):6347-53. PubMed ID: 20812755
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Master Equation Analysis of Thermal and Nonthermal Microwave Effects.
    Ma J
    J Phys Chem A; 2016 Oct; 120(41):7989-7997. PubMed ID: 27689443
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microwave-assisted cross-coupling and hydrogenation chemistry by using heterogeneous transition-metal catalysts: an evaluation of the role of selective catalyst heating.
    Irfan M; Fuchs M; Glasnov TN; Kappe CO
    Chemistry; 2009 Nov; 15(43):11608-18. PubMed ID: 19774573
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.