These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 22333209)

  • 61. Bioinspired synthesis of new silica structures.
    Patwardhan SV; Mukherjee N; Steintz-Kannan M; Clarson SJ
    Chem Commun (Camb); 2003 May; (10):1122-3. PubMed ID: 12778697
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Bioengineering of the silica-polymerizing enzyme silicatein-alpha for a targeted application to hydroxyapatite.
    Natalio F; Link T; Müller WE; Schröder HC; Cui FZ; Wang X; Wiens M
    Acta Biomater; 2010 Sep; 6(9):3720-8. PubMed ID: 20226280
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Monitoring the formation of biosilica catalysed by histidine-tagged silicatein.
    Tahir MN; Théato P; Müller WE; Schröder HC; Janshoff A; Zhang J; Huth J; Tremel W
    Chem Commun (Camb); 2004 Dec; (24):2848-9. PubMed ID: 15599437
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Identification of the Domains Involved in Promotion of Silica Formation in Glassin, a Protein Occluded in Hexactinellid Sponge Biosilica, for Development of a Tag for Purification and Immobilization of Recombinant Proteins.
    Nishi M; Kobayashi H; Amano T; Sakate Y; Bito T; Arima J; Shimizu K
    Mar Biotechnol (NY); 2020 Dec; 22(6):739-747. PubMed ID: 32291549
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Peptides from diatoms and grasses harness phosphate ion binding to silica to help regulate biomaterial structure.
    Adiram-Filiba N; Geiger Y; Kumar S; Keinan-Adamsky K; Elbaum R; Goobes G
    Acta Biomater; 2020 Aug; 112():286-297. PubMed ID: 32434074
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Influence of cyclic polyamines on silica formation during the Stöber process.
    Masse S; Laurent G; Coradin T
    Phys Chem Chem Phys; 2009 Nov; 11(43):10204-10. PubMed ID: 19865778
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Molecular biology of demosponge axial filaments and their roles in biosilicification.
    Weaver JC; Morse DE
    Microsc Res Tech; 2003 Nov; 62(4):356-67. PubMed ID: 14534908
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Controlled silica synthesis inspired by diatom silicon biomineralization.
    Vrieling EG; Sun Q; Beelen TP; Hazelaar S; Gieskes WW; van Santen RA; Sommerdijk NA
    J Nanosci Nanotechnol; 2005 Jan; 5(1):68-78. PubMed ID: 15762163
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Biologically formed mesoporous amorphous silica.
    Jensen M; Keding R; Höche T; Yue Y
    J Am Chem Soc; 2009 Feb; 131(7):2717-21. PubMed ID: 19199622
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Evagination of cells controls bio-silica formation and maturation during spicule formation in sponges.
    Wang X; Wiens M; Schröder HC; Schlossmacher U; Pisignano D; Jochum KP; Müller WE
    PLoS One; 2011; 6(6):e20523. PubMed ID: 21655099
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Synthesis and properties of supramolecular systems based on silica.
    Belyakova LA; Kazdobin KA; Belyakov VN; Ryabov SV; Danil de Namor AF
    J Colloid Interface Sci; 2005 Mar; 283(2):488-94. PubMed ID: 15721924
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Bioinspired thermo- and pH-responsive polymeric amines: multimolecular aggregates in aqueous media and matrices for silica/polymer nanocomposites.
    Danilovtseva EN; Aseyev V; Belozerova OY; Zelinskiy SN; Annenkov VV
    J Colloid Interface Sci; 2015 May; 446():1-10. PubMed ID: 25646785
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Silicatein alpha: cathepsin L-like protein in sponge biosilica.
    Shimizu K; Cha J; Stucky GD; Morse DE
    Proc Natl Acad Sci U S A; 1998 May; 95(11):6234-8. PubMed ID: 9600948
    [TBL] [Abstract][Full Text] [Related]  

  • 74. The silanol content and in vitro cytolytic activity of flame-made silica.
    Spyrogianni A; Herrmann IK; Keevend K; Pratsinis SE; Wegner K
    J Colloid Interface Sci; 2017 Dec; 507():95-106. PubMed ID: 28780339
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Silicon, silica and its surface patterning/activation with alkoxy- and amino-silanes for nanomedical applications.
    Rother D; Sen T; East D; Bruce IJ
    Nanomedicine (Lond); 2011 Feb; 6(2):281-300. PubMed ID: 21385130
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Silicatein: nanobiotechnological and biomedical applications.
    Schröder HC; Schlossmacher U; Boreiko A; Natalio F; Baranowska M; Brandt D; Wang X; Tremel W; Wiens M; Müller WE
    Prog Mol Subcell Biol; 2009; 47():251-73. PubMed ID: 19198781
    [TBL] [Abstract][Full Text] [Related]  

  • 77. A Proposal for the Evolution of Cathepsin and Silicatein in Sponges.
    Riesgo A; Maldonado M; López-Legentil S; Giribet G
    J Mol Evol; 2015 Jun; 80(5-6):278-91. PubMed ID: 25987356
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Poly(silicate)-metabolizing silicatein in siliceous spicules and silicasomes of demosponges comprises dual enzymatic activities (silica polymerase and silica esterase).
    Müller WE; Schlossmacher U; Wang X; Boreiko A; Brandt D; Wolf SE; Tremel W; Schröder HC
    FEBS J; 2008 Jan; 275(2):362-70. PubMed ID: 18081864
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Nanostructural features of demosponge biosilica.
    Weaver JC; Pietrasanta LI; Hedin N; Chmelka BF; Hansma PK; Morse DE
    J Struct Biol; 2003 Dec; 144(3):271-81. PubMed ID: 14643196
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Silica-based monoliths for capillary electrochromatography: methods of fabrication and their applications in analytical separations.
    Allen D; El Rassi Z
    Electrophoresis; 2003 Dec; 24(22-23):3962-76. PubMed ID: 14661229
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.