These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
162 related articles for article (PubMed ID: 22334026)
1. An EMG-Based Control for an Upper-Limb Power-Assist Exoskeleton Robot. Kiguchi K; Hayashi Y IEEE Trans Syst Man Cybern B Cybern; 2012 Aug; 42(4):1064-71. PubMed ID: 22334026 [TBL] [Abstract][Full Text] [Related]
2. A lower-limb power-assist robot with perception-assist. Hayashi Y; Kiguchi K IEEE Int Conf Rehabil Robot; 2011; 2011():5975445. PubMed ID: 22275645 [TBL] [Abstract][Full Text] [Related]
3. EMG-based neuro-fuzzy control of a 4DOF upper-limb power-assist exoskeleton. Kiguchi K; Imada Y; Liyanage M Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():3040-3. PubMed ID: 18002635 [TBL] [Abstract][Full Text] [Related]
4. An upper-limb power-assist robot with tremor suppression control. Kiguchi K; Hayashi Y; Asami T IEEE Int Conf Rehabil Robot; 2011; 2011():5975390. PubMed ID: 22275594 [TBL] [Abstract][Full Text] [Related]
5. Upper-limb tremor suppression with a 7DOF exoskeleton power-assist robot. Kiguchi K; Hayashi Y Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():6679-82. PubMed ID: 24111275 [TBL] [Abstract][Full Text] [Related]
6. sEMG-based joint force control for an upper-limb power-assist exoskeleton robot. Li Z; Wang B; Sun F; Yang C; Xie Q; Zhang W IEEE J Biomed Health Inform; 2014 May; 18(3):1043-50. PubMed ID: 24235314 [TBL] [Abstract][Full Text] [Related]
7. An exoskeletal robot for human elbow motion support-sensor fusion, adaptation, and control. Kiguchi K; Kariya S; Watanabe K; Izumi K; Fukuda T IEEE Trans Syst Man Cybern B Cybern; 2001; 31(3):353-61. PubMed ID: 18244798 [TBL] [Abstract][Full Text] [Related]
8. An EMG-based robot control scheme robust to time-varying EMG signal features. Artemiadis PK; Kyriakopoulos KJ IEEE Trans Inf Technol Biomed; 2010 May; 14(3):582-8. PubMed ID: 20172839 [TBL] [Abstract][Full Text] [Related]
9. An upper-limb power-assist exoskeleton using proportional myoelectric control. Tang Z; Zhang K; Sun S; Gao Z; Zhang L; Yang Z Sensors (Basel); 2014 Apr; 14(4):6677-94. PubMed ID: 24727501 [TBL] [Abstract][Full Text] [Related]
10. Development, Dynamic Modeling, and Multi-Modal Control of a Therapeutic Exoskeleton for Upper Limb Rehabilitation Training. Wu Q; Wu H Sensors (Basel); 2018 Oct; 18(11):. PubMed ID: 30356005 [TBL] [Abstract][Full Text] [Related]
11. Review of adaptive control for stroke lower limb exoskeleton rehabilitation robot based on motion intention recognition. Su D; Hu Z; Wu J; Shang P; Luo Z Front Neurorobot; 2023; 17():1186175. PubMed ID: 37465413 [TBL] [Abstract][Full Text] [Related]
12. EMG and EPP-integrated human-machine interface between the paralyzed and rehabilitation exoskeleton. Yin YH; Fan YJ; Xu LD IEEE Trans Inf Technol Biomed; 2012 Jul; 16(4):542-9. PubMed ID: 22249763 [TBL] [Abstract][Full Text] [Related]
13. A Learning-Based Hierarchical Control Scheme for an Exoskeleton Robot in Human-Robot Cooperative Manipulation. Deng M; Li Z; Kang Y; Chen CLP; Chu X IEEE Trans Cybern; 2020 Jan; 50(1):112-125. PubMed ID: 30183653 [TBL] [Abstract][Full Text] [Related]
14. A switching regime model for the EMG-based control of a robot arm. Artemiadis PK; Kyriakopoulos KJ IEEE Trans Syst Man Cybern B Cybern; 2011 Feb; 41(1):53-63. PubMed ID: 20403787 [TBL] [Abstract][Full Text] [Related]
15. A Multi-Mode Rehabilitation Robot With Magnetorheological Actuators Based on Human Motion Intention Estimation. Xu J; Li Y; Xu L; Peng C; Chen S; Liu J; Xu C; Cheng G; Xu H; Liu Y; Chen J IEEE Trans Neural Syst Rehabil Eng; 2019 Oct; 27(10):2216-2228. PubMed ID: 31443038 [TBL] [Abstract][Full Text] [Related]
17. A passively safe cable driven upper limb rehabilitation exoskeleton. Chen Y; Fan J; Zhu Y; Zhao J; Cai H Technol Health Care; 2015; 23 Suppl 2():S197-202. PubMed ID: 26410484 [TBL] [Abstract][Full Text] [Related]
18. A SERIES ELASTIC ACTUATOR DESIGN AND CONTROL IN A LINKAGE BASED HAND EXOSKELETON. Chauhan RJ; Ben-Tzvi P Proc ASME Dyn Syst Control Conf; 2019 Oct; 2019(3):. PubMed ID: 32030310 [TBL] [Abstract][Full Text] [Related]
19. Musculoskeletal modeling and humanoid control of robots based on human gait data. Yu J; Zhang S; Wang A; Li W; Song L PeerJ Comput Sci; 2021; 7():e657. PubMed ID: 34458572 [TBL] [Abstract][Full Text] [Related]
20. A noise-suppressing neural network approach for upper limb human-machine interactive control based on sEMG signals. Zhang B; Lan X; Wang G; Pang Z; Zhang X; Sun Z Front Neurorobot; 2022; 16():1047325. PubMed ID: 36406950 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]