BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 22334039)

  • 1. MotEvo: integrated Bayesian probabilistic methods for inferring regulatory sites and motifs on multiple alignments of DNA sequences.
    Arnold P; Erb I; Pachkov M; Molina N; van Nimwegen E
    Bioinformatics; 2012 Feb; 28(4):487-94. PubMed ID: 22334039
    [TBL] [Abstract][Full Text] [Related]  

  • 2. PhyloGibbs: a Gibbs sampling motif finder that incorporates phylogeny.
    Siddharthan R; Siggia ED; van Nimwegen E
    PLoS Comput Biol; 2005 Dec; 1(7):e67. PubMed ID: 16477324
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Finding sequence motifs with Bayesian models incorporating positional information: an application to transcription factor binding sites.
    Kim NK; Tharakaraman K; Mariño-Ramírez L; Spouge JL
    BMC Bioinformatics; 2008 Jun; 9():262. PubMed ID: 18533028
    [TBL] [Abstract][Full Text] [Related]  

  • 4. SwissRegulon, a database of genome-wide annotations of regulatory sites: recent updates.
    Pachkov M; Balwierz PJ; Arnold P; Ozonov E; van Nimwegen E
    Nucleic Acids Res; 2013 Jan; 41(Database issue):D214-20. PubMed ID: 23180783
    [TBL] [Abstract][Full Text] [Related]  

  • 5. ConBind: motif-aware cross-species alignment for the identification of functional transcription factor binding sites.
    Lelieveld SH; Schütte J; Dijkstra MJ; Bawono P; Kinston SJ; Göttgens B; Heringa J; Bonzanni N
    Nucleic Acids Res; 2016 May; 44(8):e72. PubMed ID: 26721389
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Heterogeneity in DNA multiple alignments: modeling, inference, and applications in motif finding.
    Chen G; Zhou Q
    Biometrics; 2010 Sep; 66(3):694-704. PubMed ID: 19995355
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular and structural considerations of TF-DNA binding for the generation of biologically meaningful and accurate phylogenetic footprinting analysis: the LysR-type transcriptional regulator family as a study model.
    Oliver P; Peralta-Gil M; Tabche ML; Merino E
    BMC Genomics; 2016 Aug; 17(1):686. PubMed ID: 27567672
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Alignment and prediction of cis-regulatory modules based on a probabilistic model of evolution.
    He X; Ling X; Sinha S
    PLoS Comput Biol; 2009 Mar; 5(3):e1000299. PubMed ID: 19293946
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Incorporating evolution of transcription factor binding sites into annotated alignments.
    Bais AS; Grossmann S; Vingron M
    J Biosci; 2007 Aug; 32(5):841-50. PubMed ID: 17914226
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bayesian variable selection for gene expression modeling with regulatory motif binding sites in neuroinflammatory events.
    Liu KY; Zhou X; Kan K; Wong ST
    Neuroinformatics; 2006; 4(1):95-117. PubMed ID: 16595861
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phylogeny based discovery of regulatory elements.
    Gertz J; Fay JC; Cohen BA
    BMC Bioinformatics; 2006 May; 7():266. PubMed ID: 16716228
    [TBL] [Abstract][Full Text] [Related]  

  • 12. ChIP-GSM: Inferring active transcription factor modules to predict functional regulatory elements.
    Chen X; Neuwald AF; Hilakivi-Clarke L; Clarke R; Xuan J
    PLoS Comput Biol; 2021 Jul; 17(7):e1009203. PubMed ID: 34292930
    [TBL] [Abstract][Full Text] [Related]  

  • 13. LASAGNA: a novel algorithm for transcription factor binding site alignment.
    Lee C; Huang CH
    BMC Bioinformatics; 2013 Mar; 14():108. PubMed ID: 23522376
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Most of the tight positional conservation of transcription factor binding sites near the transcription start site reflects their co-localization within regulatory modules.
    Acevedo-Luna N; Mariño-Ramírez L; Halbert A; Hansen U; Landsman D; Spouge JL
    BMC Bioinformatics; 2016 Nov; 17(1):479. PubMed ID: 27871221
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A transdimensional Bayesian model for pattern recognition in DNA sequences.
    Li SM; Wakefield J; Self S
    Biostatistics; 2008 Oct; 9(4):668-85. PubMed ID: 18349034
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phylogenetic simulation of promoter evolution: estimation and modeling of binding site turnover events and assessment of their impact on alignment tools.
    Huang W; Nevins JR; Ohler U
    Genome Biol; 2007; 8(10):R225. PubMed ID: 17956628
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluating phylogenetic footprinting for human-rodent comparisons.
    Sauer T; Shelest E; Wingender E
    Bioinformatics; 2006 Feb; 22(4):430-7. PubMed ID: 16332706
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transcription factor binding sites detection by using alignment-based approach.
    Mahdevar G; Sadeghi M; Nowzari-Dalini A
    J Theor Biol; 2012 Jul; 304():96-102. PubMed ID: 22504445
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Extracting transcription factor binding sites from unaligned gene sequences with statistical models.
    Lu CC; Yuan WH; Chen TM
    BMC Bioinformatics; 2008 Dec; 9 Suppl 12(Suppl 12):S7. PubMed ID: 19091030
    [TBL] [Abstract][Full Text] [Related]  

  • 20. ChIP-BIT: Bayesian inference of target genes using a novel joint probabilistic model of ChIP-seq profiles.
    Chen X; Jung JG; Shajahan-Haq AN; Clarke R; Shih IeM; Wang Y; Magnani L; Wang TL; Xuan J
    Nucleic Acids Res; 2016 Apr; 44(7):e65. PubMed ID: 26704972
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.