These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 22334332)

  • 1. A method to determine the necessity for global signal regression in resting-state fMRI studies.
    Chen G; Chen G; Xie C; Ward BD; Li W; Antuono P; Li SJ
    Magn Reson Med; 2012 Dec; 68(6):1828-35. PubMed ID: 22334332
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Anticorrelations in resting state networks without global signal regression.
    Chai XJ; Castañón AN; Ongür D; Whitfield-Gabrieli S
    Neuroimage; 2012 Jan; 59(2):1420-8. PubMed ID: 21889994
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Resting-state functional magnetic resonance imaging: the impact of regression analysis.
    Yeh CJ; Tseng YS; Lin YR; Tsai SY; Huang TY
    J Neuroimaging; 2015; 25(1):117-23. PubMed ID: 24571121
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The impact of global signal regression on resting state correlations: are anti-correlated networks introduced?
    Murphy K; Birn RM; Handwerker DA; Jones TB; Bandettini PA
    Neuroimage; 2009 Feb; 44(3):893-905. PubMed ID: 18976716
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Correlations and anticorrelations in resting-state functional connectivity MRI: a quantitative comparison of preprocessing strategies.
    Weissenbacher A; Kasess C; Gerstl F; Lanzenberger R; Moser E; Windischberger C
    Neuroimage; 2009 Oct; 47(4):1408-16. PubMed ID: 19442749
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identifying the default mode network structure using dynamic causal modeling on resting-state functional magnetic resonance imaging.
    Di X; Biswal BB
    Neuroimage; 2014 Feb; 86():53-9. PubMed ID: 23927904
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantification of the impact of a confounding variable on functional connectivity confirms anti-correlated networks in the resting-state.
    Carbonell F; Bellec P; Shmuel A
    Neuroimage; 2014 Feb; 86():343-53. PubMed ID: 24128734
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The global signal and observed anticorrelated resting state brain networks.
    Fox MD; Zhang D; Snyder AZ; Raichle ME
    J Neurophysiol; 2009 Jun; 101(6):3270-83. PubMed ID: 19339462
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of model-based physiological noise correction on default mode network anti-correlations and correlations.
    Chang C; Glover GH
    Neuroimage; 2009 Oct; 47(4):1448-59. PubMed ID: 19446646
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Anticorrelated networks in resting-state fMRI-BOLD data.
    Liu Y; Huang L; Li M; Zhou Z; Hu D
    Biomed Mater Eng; 2015; 26 Suppl 1():S1201-11. PubMed ID: 26405879
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Anticorrelated resting-state functional connectivity in awake rat brain.
    Liang Z; King J; Zhang N
    Neuroimage; 2012 Jan; 59(2):1190-9. PubMed ID: 21864689
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimization of rs-fMRI Pre-processing for Enhanced Signal-Noise Separation, Test-Retest Reliability, and Group Discrimination.
    Shirer WR; Jiang H; Price CM; Ng B; Greicius MD
    Neuroimage; 2015 Aug; 117():67-79. PubMed ID: 25987368
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A SVM-based quantitative fMRI method for resting-state functional network detection.
    Song X; Chen NK
    Magn Reson Imaging; 2014 Sep; 32(7):819-31. PubMed ID: 24928301
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A novel approach for global noise reduction in resting-state fMRI: APPLECOR.
    Marx M; Pauly KB; Chang C
    Neuroimage; 2013 Jan; 64():19-31. PubMed ID: 23022327
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On the origins of the 'global signal' determined by functional magnetic resonance imaging in the resting state.
    Bennett MR; Farnell L; Gibson W; Lagopoulos J
    J Neural Eng; 2016 Feb; 13(1):016012. PubMed ID: 26678535
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamic resting state fMRI analysis in mice reveals a set of Quasi-Periodic Patterns and illustrates their relationship with the global signal.
    Belloy ME; Naeyaert M; Abbas A; Shah D; Vanreusel V; van Audekerke J; Keilholz SD; Keliris GA; Van der Linden A; Verhoye M
    Neuroimage; 2018 Oct; 180(Pt B):463-484. PubMed ID: 29454935
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The impact of "physiological correction" on functional connectivity analysis of pharmacological resting state fMRI.
    Khalili-Mahani N; Chang C; van Osch MJ; Veer IM; van Buchem MA; Dahan A; Beckmann CF; van Gerven JM; Rombouts SA
    Neuroimage; 2013 Jan; 65():499-510. PubMed ID: 23022093
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantitative evaluation of statistical inference in resting state functional MRI.
    Yang X; Kang H; Newton A; Landman BA
    Med Image Comput Comput Assist Interv; 2012; 15(Pt 2):246-53. PubMed ID: 23286055
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterizing the modulation of resting-state fMRI metrics by baseline physiology.
    Chu PPW; Golestani AM; Kwinta JB; Khatamian YB; Chen JJ
    Neuroimage; 2018 Jun; 173():72-87. PubMed ID: 29452265
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Construct validation of a DCM for resting state fMRI.
    Razi A; Kahan J; Rees G; Friston KJ
    Neuroimage; 2015 Feb; 106():1-14. PubMed ID: 25463471
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.