BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 22334591)

  • 1. One-pot synthesis of (Au nanorod)-(metal sulfide) core-shell nanostructures with enhanced gas-sensing property.
    Wang H; Sun Z; Lu Q; Zeng F; Su D
    Small; 2012 Apr; 8(8):1167-72, 1124. PubMed ID: 22334591
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydrothermal transformation from Au core-sulfide shell to Au nanoparticle-decorated sulfide hybrid nanostructures.
    Bao Z; Sun Z; Xiao M; Tian L; Wang J
    Nanoscale; 2010 Sep; 2(9):1650-2. PubMed ID: 20820693
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis of hybrid CdS-Au colloidal nanostructures.
    Saunders AE; Popov I; Banin U
    J Phys Chem B; 2006 Dec; 110(50):25421-9. PubMed ID: 17165989
    [TBL] [Abstract][Full Text] [Related]  

  • 4. One-step formation of core-shell sulfide-oxide nanorod arrays from a single precursor.
    Lin YF; Hsu YJ; Lu SY; Chiang WS
    Nanotechnology; 2006 Sep; 17(18):4773-82. PubMed ID: 21727611
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis and enhanced ethanol sensing characteristics of alpha-Fe2O3/SnO2 core-shell nanorods.
    Chen YJ; Zhu CL; Wang LJ; Gao P; Cao MS; Shi XL
    Nanotechnology; 2009 Jan; 20(4):045502. PubMed ID: 19417318
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape, and metal composition.
    Lee KS; El-Sayed MA
    J Phys Chem B; 2006 Oct; 110(39):19220-5. PubMed ID: 17004772
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Crystal overgrowth on gold nanorods: tuning the shape, facet, aspect ratio, and composition of the nanorods.
    Song JH; Kim F; Kim D; Yang P
    Chemistry; 2005 Jan; 11(3):910-6. PubMed ID: 15593133
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lateral etching of core-shell Au@Metal nanorods to metal-tipped au nanorods with improved catalytic activity.
    Guo X; Zhang Q; Sun Y; Zhao Q; Yang J
    ACS Nano; 2012 Feb; 6(2):1165-75. PubMed ID: 22224460
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A general approach to the synthesis of gold-metal sulfide core-shell and heterostructures.
    Sun Z; Yang Z; Zhou J; Yeung MH; Ni W; Wu H; Wang J
    Angew Chem Int Ed Engl; 2009; 48(16):2881-5. PubMed ID: 19288511
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Near Room Temperature, Fast-Response, and Highly Sensitive Triethylamine Sensor Assembled with Au-Loaded ZnO/SnO₂ Core-Shell Nanorods on Flat Alumina Substrates.
    Ju DX; Xu HY; Qiu ZW; Zhang ZC; Xu Q; Zhang J; Wang JQ; Cao BQ
    ACS Appl Mater Interfaces; 2015 Sep; 7(34):19163-71. PubMed ID: 26280916
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The shape evolution of gold seeds and gold@silver core-shell nanostructures.
    Wu Y; Jiang P; Jiang M; Wang TW; Guo CF; Xie SS; Wang ZL
    Nanotechnology; 2009 Jul; 20(30):305602. PubMed ID: 19584416
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fluorescent Au@Ag core-shell nanoparticles with controlled shell thickness and Hg(II) sensing.
    Guha S; Roy S; Banerjee A
    Langmuir; 2011 Nov; 27(21):13198-205. PubMed ID: 21913719
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design of Au@ZnO yolk-shell nanospheres with enhanced gas sensing properties.
    Li X; Zhou X; Guo H; Wang C; Liu J; Sun P; Liu F; Lu G
    ACS Appl Mater Interfaces; 2014 Nov; 6(21):18661-7. PubMed ID: 25290085
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Well-controlled synthesis of Au@Pt nanostructures by gold-nanorod-seeded growth.
    Feng L; Wu X; Ren L; Xiang Y; He W; Zhang K; Zhou W; Xie S
    Chemistry; 2008; 14(31):9764-71. PubMed ID: 18773406
    [TBL] [Abstract][Full Text] [Related]  

  • 15. One-pot synthesis of Ag-Au bimetallic nanoparticles with Au shell and their high catalytic activity for aerobic glucose oxidation.
    Zhang H; Okuni J; Toshima N
    J Colloid Interface Sci; 2011 Feb; 354(1):131-8. PubMed ID: 21067768
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhanced optical responses of Au@Pd core/shell nanobars.
    Zhang K; Xiang Y; Wu X; Feng L; He W; Liu J; Zhou W; Xie S
    Langmuir; 2009 Jan; 25(2):1162-8. PubMed ID: 19090666
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis and characterization of Au core-Au-Ag shell nanoparticles from gold seeds: impacts of glycine concentration and pH.
    Huang YF; Huang KM; Chang HT
    J Colloid Interface Sci; 2006 Sep; 301(1):145-54. PubMed ID: 16777126
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced photocurrent and dynamic response in vertically aligned In₂S₃/Ag core/shell nanorod array photoconductive devices.
    Cansizoglu H; Cansizoglu MF; Watanabe F; Karabacak T
    ACS Appl Mater Interfaces; 2014 Jun; 6(11):8673-82. PubMed ID: 24824452
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hybrid Au-CdSe and Ag-CdSe nanoflowers and core-shell nanocrystals via one-pot heterogeneous nucleation and growth.
    AbouZeid KM; Mohamed MB; El-Shall MS
    Small; 2011 Dec; 7(23):3299-307. PubMed ID: 21994186
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis and optical properties of nanorattles and multiple-walled nanoshells/nanotubes made of metal alloys.
    Sun Y; Wiley B; Li ZY; Xia Y
    J Am Chem Soc; 2004 Aug; 126(30):9399-406. PubMed ID: 15281832
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.