BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

612 related articles for article (PubMed ID: 22334665)

  • 21. Core histone hyperacetylation impacts cooperative behavior and high-affinity binding of histone H1 to chromatin.
    Raghuram N; Carrero G; Stasevich TJ; McNally JG; Th'ng J; Hendzel MJ
    Biochemistry; 2010 Jun; 49(21):4420-31. PubMed ID: 20411992
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Histone H1 subtypes differentially modulate chromatin condensation without preventing ATP-dependent remodeling by SWI/SNF or NURF.
    Clausell J; Happel N; Hale TK; Doenecke D; Beato M
    PLoS One; 2009 Oct; 4(10):e0007243. PubMed ID: 19794910
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Structure and Dynamics of a 197 bp Nucleosome in Complex with Linker Histone H1.
    Bednar J; Garcia-Saez I; Boopathi R; Cutter AR; Papai G; Reymer A; Syed SH; Lone IN; Tonchev O; Crucifix C; Menoni H; Papin C; Skoufias DA; Kurumizaka H; Lavery R; Hamiche A; Hayes JJ; Schultz P; Angelov D; Petosa C; Dimitrov S
    Mol Cell; 2017 May; 66(3):384-397.e8. PubMed ID: 28475873
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Regulation of Cellular Dynamics and Chromosomal Binding Site Preference of Linker Histones H1.0 and H1.X.
    Okuwaki M; Abe M; Hisaoka M; Nagata K
    Mol Cell Biol; 2016 Nov; 36(21):2681-2696. PubMed ID: 27528617
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Differential affinity of mammalian histone H1 somatic subtypes for DNA and chromatin.
    Orrego M; Ponte I; Roque A; Buschati N; Mora X; Suau P
    BMC Biol; 2007 May; 5():22. PubMed ID: 17498293
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effects of H1 histone variant overexpression on chromatin structure.
    Gunjan A; Alexander BT; Sittman DB; Brown DT
    J Biol Chem; 1999 Dec; 274(53):37950-6. PubMed ID: 10608862
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Photobleaching studies reveal that a single amino acid polymorphism is responsible for the differential binding affinities of linker histone subtypes H1.1 and H1.5.
    Flanagan TW; Files JK; Casano KR; George EM; Brown DT
    Biol Open; 2016 Feb; 5(3):372-80. PubMed ID: 26912777
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Binding of linker histones to the core nucleosome.
    Ali Z; Singh N
    J Biol Chem; 1987 Sep; 262(27):12989-93. PubMed ID: 3654599
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Linker histone subtypes differ in their effect on nucleosomal spacing in vivo.
    Öberg C; Izzo A; Schneider R; Wrange Ö; Belikov S
    J Mol Biol; 2012 Jun; 419(3-4):183-97. PubMed ID: 22446683
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The interaction of NSBP1/HMGN5 with nucleosomes in euchromatin counteracts linker histone-mediated chromatin compaction and modulates transcription.
    Rochman M; Postnikov Y; Correll S; Malicet C; Wincovitch S; Karpova TS; McNally JG; Wu X; Bubunenko NA; Grigoryev S; Bustin M
    Mol Cell; 2009 Sep; 35(5):642-56. PubMed ID: 19748358
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Competition between histone H1 and HMGN proteins for chromatin binding sites.
    Catez F; Brown DT; Misteli T; Bustin M
    EMBO Rep; 2002 Aug; 3(8):760-6. PubMed ID: 12151335
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Structure and Functions of Linker Histones.
    Lyubitelev AV; Nikitin DV; Shaytan AK; Studitsky VM; Kirpichnikov MP
    Biochemistry (Mosc); 2016 Mar; 81(3):213-23. PubMed ID: 27262190
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A Small Number of Residues Can Determine if Linker Histones Are Bound On or Off Dyad in the Chromatosome.
    Zhou BR; Feng H; Ghirlando R; Li S; Schwieters CD; Bai Y
    J Mol Biol; 2016 Oct; 428(20):3948-3959. PubMed ID: 27558112
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Computation of FRAP recovery times for linker histone - chromatin binding on the basis of Brownian dynamics simulations.
    Öztürk MA; Wade RC
    Biochim Biophys Acta Gen Subj; 2020 Oct; 1864(10):129653. PubMed ID: 32512172
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The histone H1 family: specific members, specific functions?
    Izzo A; Kamieniarz K; Schneider R
    Biol Chem; 2008 Apr; 389(4):333-43. PubMed ID: 18208346
    [TBL] [Abstract][Full Text] [Related]  

  • 36. dBigH1, a second histone H1 in Drosophila, and the consequences for histone fold nomenclature.
    González-Romero R; Ausio J
    Epigenetics; 2014 Jun; 9(6):791-7. PubMed ID: 24622397
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Identification and Analysis of Six Phosphorylation Sites Within the Xenopus laevis Linker Histone H1.0 C-Terminal Domain Indicate Distinct Effects on Nucleosome Structure.
    Hao F; Mishra LN; Jaya P; Jones R; Hayes JJ
    Mol Cell Proteomics; 2022 Jul; 21(7):100250. PubMed ID: 35618225
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Network of dynamic interactions between histone H1 and high-mobility-group proteins in chromatin.
    Catez F; Yang H; Tracey KJ; Reeves R; Misteli T; Bustin M
    Mol Cell Biol; 2004 May; 24(10):4321-8. PubMed ID: 15121851
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Interaction of maize chromatin-associated HMG proteins with mononucleosomes: role of core and linker histones.
    Lichota J; Grasser KD
    Biol Chem; 2003 Jul; 384(7):1019-27. PubMed ID: 12956418
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Differential in vivo binding dynamics of somatic and oocyte-specific linker histones in oocytes and during ES cell nuclear transfer.
    Becker M; Becker A; Miyara F; Han Z; Kihara M; Brown DT; Hager GL; Latham K; Adashi EY; Misteli T
    Mol Biol Cell; 2005 Aug; 16(8):3887-95. PubMed ID: 15944219
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 31.