These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
163 related articles for article (PubMed ID: 22334757)
1. Comparison of random mutagenesis and semi-rational designed libraries for improved cytochrome P450 BM3-catalyzed hydroxylation of small alkanes. Chen MM; Snow CD; Vizcarra CL; Mayo SL; Arnold FH Protein Eng Des Sel; 2012 Apr; 25(4):171-8. PubMed ID: 22334757 [TBL] [Abstract][Full Text] [Related]
2. Regio- and enantioselective alkane hydroxylation with engineered cytochromes P450 BM-3. Peters MW; Meinhold P; Glieder A; Arnold FH J Am Chem Soc; 2003 Nov; 125(44):13442-50. PubMed ID: 14583039 [TBL] [Abstract][Full Text] [Related]
3. Site-directed mutagenesis of the putative distal helix of peroxygenase cytochrome P450. Matsunaga I; Ueda A; Sumimoto T; Ichihara K; Ayata M; Ogura H Arch Biochem Biophys; 2001 Oct; 394(1):45-53. PubMed ID: 11566026 [TBL] [Abstract][Full Text] [Related]
4. Hydroxylation of non-substituted polycyclic aromatic hydrocarbons by cytochrome P450 BM3 engineered by directed evolution. Sideri A; Goyal A; Di Nardo G; Tsotsou GE; Gilardi G J Inorg Biochem; 2013 Mar; 120():1-7. PubMed ID: 23262457 [TBL] [Abstract][Full Text] [Related]
5. A single mutation in cytochrome P450 BM3 changes substrate orientation in a catalytic intermediate and the regiospecificity of hydroxylation. Oliver CF; Modi S; Sutcliffe MJ; Primrose WU; Lian LY; Roberts GC Biochemistry; 1997 Feb; 36(7):1567-72. PubMed ID: 9048540 [TBL] [Abstract][Full Text] [Related]
6. Screening of a minimal enriched P450 BM3 mutant library for hydroxylation of cyclic and acyclic alkanes. Weber E; Seifert A; Antonovici M; Geinitz C; Pleiss J; Urlacher VB Chem Commun (Camb); 2011 Jan; 47(3):944-6. PubMed ID: 21079837 [TBL] [Abstract][Full Text] [Related]
7. Active site substitution A82W improves the regioselectivity of steroid hydroxylation by cytochrome P450 BM3 mutants as rationalized by spin relaxation nuclear magnetic resonance studies. Rea V; Kolkman AJ; Vottero E; Stronks EJ; Ampt KA; Honing M; Vermeulen NP; Wijmenga SS; Commandeur JN Biochemistry; 2012 Jan; 51(3):750-60. PubMed ID: 22208729 [TBL] [Abstract][Full Text] [Related]
8. Mechanistic Study of the Stereoselective Hydroxylation of [2- Yang CL; Lin CH; Luo WI; Lee TL; Ramu R; Ng KY; Tsai YF; Wei GT; Yu SS Chemistry; 2017 Feb; 23(11):2571-2582. PubMed ID: 27798822 [TBL] [Abstract][Full Text] [Related]
9. Laboratory evolution of P450 BM3 for mediated electron transfer yielding an activity-improved and reductase-independent variant. Nazor J; Dannenmann S; Adjei RO; Fordjour YB; Ghampson IT; Blanusa M; Roccatano D; Schwaneberg U Protein Eng Des Sel; 2008 Jan; 21(1):29-35. PubMed ID: 18093991 [TBL] [Abstract][Full Text] [Related]
10. Efficient screening of cytochrome P450 BM3 mutants for their metabolic activity and diversity toward a wide set of drug-like molecules in chemical space. Reinen J; van Leeuwen JS; Li Y; Sun L; Grootenhuis PD; Decker CJ; Saunders J; Vermeulen NP; Commandeur JN Drug Metab Dispos; 2011 Sep; 39(9):1568-76. PubMed ID: 21673132 [TBL] [Abstract][Full Text] [Related]
11. Alkane hydroxylation by peroxy acids: a comparison with the cytochrome P450 hydroxylation. Groenhof AR; Ehlers AW; Lammertsma K J Phys Chem A; 2008 Dec; 112(50):12855-61. PubMed ID: 18956858 [TBL] [Abstract][Full Text] [Related]
12. A single active site mutation inverts stereoselectivity of 16-hydroxylation of testosterone catalyzed by engineered cytochrome P450 BM3. Venkataraman H; Beer SB; Bergen LA; Essen Nv; Geerke DP; Vermeulen NP; Commandeur JN Chembiochem; 2012 Mar; 13(4):520-3. PubMed ID: 22275147 [TBL] [Abstract][Full Text] [Related]
13. An Enzymatic Route to α-Tocopherol Synthons: Aromatic Hydroxylation of Pseudocumene and Mesitylene with P450 BM3. Dennig A; Weingartner AM; Kardashliev T; Müller CA; Tassano E; Schürmann M; Ruff AJ; Schwaneberg U Chemistry; 2017 Dec; 23(71):17981-17991. PubMed ID: 28990705 [TBL] [Abstract][Full Text] [Related]
14. Identification of three key residues in substrate recognition site 5 of human cytochrome P450 3A4 by cassette and site-directed mutagenesis. He YA; He YQ; Szklarz GD; Halpert JR Biochemistry; 1997 Jul; 36(29):8831-9. PubMed ID: 9220969 [TBL] [Abstract][Full Text] [Related]
15. Filling a hole in cytochrome P450 BM3 improves substrate binding and catalytic efficiency. Huang WC; Westlake AC; Maréchal JD; Joyce MG; Moody PC; Roberts GC J Mol Biol; 2007 Oct; 373(3):633-51. PubMed ID: 17868686 [TBL] [Abstract][Full Text] [Related]
16. Application of 3-dimensional homology modeling of cytochrome P450 2B1 for interpretation of site-directed mutagenesis results. Szklarz GD; Ornstein RL; Halpert JR J Biomol Struct Dyn; 1994 Aug; 12(1):061-78. PubMed ID: 7848559 [TBL] [Abstract][Full Text] [Related]
17. A hydroquinone-specific screening system for directed P450 evolution. Weingartner AM; Sauer DF; Dhoke GV; Davari MD; Ruff AJ; Schwaneberg U Appl Microbiol Biotechnol; 2018 Nov; 102(22):9657-9667. PubMed ID: 30191291 [TBL] [Abstract][Full Text] [Related]
18. Identification of critical residues in novel drug metabolizing mutants of cytochrome P450 BM3 using random mutagenesis. van Vugt-Lussenburg BM; Stjernschantz E; Lastdrager J; Oostenbrink C; Vermeulen NP; Commandeur JN J Med Chem; 2007 Feb; 50(3):455-61. PubMed ID: 17266197 [TBL] [Abstract][Full Text] [Related]
19. Combinatorial engineering to enhance amylosucrase performance: construction, selection, and screening of variant libraries for increased activity. van der Veen BA; Potocki-Véronèse G; Albenne C; Joucla G; Monsan P; Remaud-Simeon M FEBS Lett; 2004 Feb; 560(1-3):91-7. PubMed ID: 14988004 [TBL] [Abstract][Full Text] [Related]
20. Electron transfer in flavocytochrome P450 BM3: kinetics of flavin reduction and oxidation, the role of cysteine 999, and relationships with mammalian cytochrome P450 reductase. Roitel O; Scrutton NS; Munro AW Biochemistry; 2003 Sep; 42(36):10809-21. PubMed ID: 12962506 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]