BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 22334780)

  • 1. In vitro placental model optimization for nanoparticle transport studies.
    Cartwright L; Poulsen MS; Nielsen HM; Pojana G; Knudsen LE; Saunders M; Rytting E
    Int J Nanomedicine; 2012; 7():497-510. PubMed ID: 22334780
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Uptake and transport of pullulan acetate nanoparticles in the BeWo b30 placental barrier cell model.
    Tang H; Jiang Z; He H; Li X; Hu H; Zhang N; Dai Y; Zhou Z
    Int J Nanomedicine; 2018; 13():4073-4082. PubMed ID: 30034233
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinetics of silica nanoparticles in the human placenta.
    Poulsen MS; Mose T; Maroun LL; Mathiesen L; Knudsen LE; Rytting E
    Nanotoxicology; 2015 May; 9 Suppl 1(0 1):79-86. PubMed ID: 23742169
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preparation, characterization, and transport of dexamethasone-loaded polymeric nanoparticles across a human placental in vitro model.
    Ali H; Kalashnikova I; White MA; Sherman M; Rytting E
    Int J Pharm; 2013 Sep; 454(1):149-57. PubMed ID: 23850397
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Uptake mechanism of valproic acid in human placental choriocarcinoma cell line (BeWo).
    Ushigome F; Takanaga H; Matsuo H; Tsukimori K; Nakano H; Ohtani H; Sawada Y
    Eur J Pharmacol; 2001 Apr; 417(3):169-76. PubMed ID: 11334847
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Translocation of positively and negatively charged polystyrene nanoparticles in an in vitro placental model.
    Kloet SK; Walczak AP; Louisse J; van den Berg HH; Bouwmeester H; Tromp P; Fokkink RG; Rietjens IM
    Toxicol In Vitro; 2015 Oct; 29(7):1701-10. PubMed ID: 26145586
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assessment of an in vitro transport model using BeWo b30 cells to predict placental transfer of compounds.
    Li H; van Ravenzwaay B; Rietjens IM; Louisse J
    Arch Toxicol; 2013 Sep; 87(9):1661-9. PubMed ID: 23689295
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Efflux transporter mRNA expression profiles in differentiating JEG-3 human choriocarcinoma cells as a placental transport model.
    Ikeda K; Yamasaki K; Homemoto M; Yamaue S; Ogawa M; Nakao E; Fukunaga Y; Nakanishi T; Utoguchi N; Myotoku M; Hirotani Y
    Pharmazie; 2012 Jan; 67(1):86-90. PubMed ID: 22393837
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Establishment of a confluent monolayer model with human primary trophoblast cells: novel insights into placental glucose transport.
    Huang X; Lüthi M; Ontsouka EC; Kallol S; Baumann MU; Surbek DV; Albrecht C
    Mol Hum Reprod; 2016 Jun; 22(6):442-56. PubMed ID: 26931579
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Combination of the BeWo b30 placental transport model and the embryonic stem cell test to assess the potential developmental toxicity of silver nanoparticles.
    Abdelkhaliq A; van der Zande M; Peters RJB; Bouwmeester H
    Part Fibre Toxicol; 2020 Mar; 17(1):11. PubMed ID: 32156294
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Barrier capacity of human placenta for nanosized materials.
    Wick P; Malek A; Manser P; Meili D; Maeder-Althaus X; Diener L; Diener PA; Zisch A; Krug HF; von Mandach U
    Environ Health Perspect; 2010 Mar; 118(3):432-6. PubMed ID: 20064770
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nanoparticles can cross mouse placenta and induce trophoblast apoptosis.
    Huang JP; Hsieh PC; Chen CY; Wang TY; Chen PC; Liu CC; Chen CC; Chen CP
    Placenta; 2015 Dec; 36(12):1433-41. PubMed ID: 26526105
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Impedance Spectroscopy and Transcriptome Analysis of Choriocarcinoma BeWo b30 as a Model of Human Placenta].
    Nikulin SV; Knyazev EN; Gerasimenko TN; Shilin SA; Gazizov IN; Zakharova GS; Poloznikov AA; Sakharov DA
    Mol Biol (Mosk); 2019; 53(3):467-475. PubMed ID: 31184612
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Folate-mediated Transport of Nanoparticles across the Placenta.
    Kalashnikova I; Patrikeeva S; Nanovskaya TN; Andreev YA; Ahmed MS; Rytting E
    Pharm Nanotechnol; 2024; 12(2):171-183. PubMed ID: 37461351
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transport of digoxin-loaded polymeric nanoparticles across BeWo cells, an in vitro model of human placental trophoblast.
    Albekairi NA; Al-Enazy S; Ali S; Rytting E
    Ther Deliv; 2015; 6(12):1325-34. PubMed ID: 26652279
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Application of BeWo cell model in studies on placental transport mechanism].
    Guo J; Song DR
    Zhongguo Zhong Yao Za Zhi; 2012 Nov; 37(21):3193-7. PubMed ID: 23397711
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Establishment of an in vitro placental barrier model cultured under physiologically relevant oxygen levels.
    Wong MK; Li EW; Adam M; Selvaganapathy PR; Raha S
    Mol Hum Reprod; 2020 May; 26(5):353-365. PubMed ID: 32159799
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bidirectional Transfer Study of Polystyrene Nanoparticles across the Placental Barrier in an ex Vivo Human Placental Perfusion Model.
    Grafmueller S; Manser P; Diener L; Diener PA; Maeder-Althaus X; Maurizi L; Jochum W; Krug HF; Buerki-Thurnherr T; von Mandach U; Wick P
    Environ Health Perspect; 2015 Dec; 123(12):1280-6. PubMed ID: 25956008
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transport and metabolism of opioid peptides across BeWo cells, an in vitro model of the placental barrier.
    Ampasavate C; Chandorkar GA; Vande Velde DG; Stobaugh JF; Audus KL
    Int J Pharm; 2002 Feb; 233(1-2):85-98. PubMed ID: 11897413
    [TBL] [Abstract][Full Text] [Related]  

  • 20. IGF regulation of neutral amino acid transport in the BeWo choriocarcinoma cell line (b30 clone): evidence for MAP kinase-dependent and MAP kinase-independent mechanisms.
    Fang J; Mao D; Smith CH; Fant ME
    Growth Horm IGF Res; 2006; 16(5-6):318-25. PubMed ID: 17035059
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.