These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Injectable calcium phosphate cement with PLGA, gelatin and PTMC microspheres in a rabbit femoral defect. Liao H; Walboomers XF; Habraken WJ; Zhang Z; Li Y; Grijpma DW; Mikos AG; Wolke JG; Jansen JA Acta Biomater; 2011 Apr; 7(4):1752-9. PubMed ID: 21185953 [TBL] [Abstract][Full Text] [Related]
4. In vitro degradation rate of apatitic calcium phosphate cement with incorporated PLGA microspheres. Félix Lanao RP; Leeuwenburgh SC; Wolke JG; Jansen JA Acta Biomater; 2011 Sep; 7(9):3459-68. PubMed ID: 21689794 [TBL] [Abstract][Full Text] [Related]
5. In vitro degradation, biocompatibility, and in vivo osteogenesis of poly(lactic-co-glycolic acid)/calcium phosphate cement scaffold with unidirectional lamellar pore structure. He F; Ye J J Biomed Mater Res A; 2012 Dec; 100(12):3239-50. PubMed ID: 22733543 [TBL] [Abstract][Full Text] [Related]
6. Incorporation of bioactive glass in calcium phosphate cement: An evaluation. Renno AC; van de Watering FC; Nejadnik MR; Crovace MC; Zanotto ED; Wolke JG; Jansen JA; van den Beucken JJ Acta Biomater; 2013 Mar; 9(3):5728-39. PubMed ID: 23159565 [TBL] [Abstract][Full Text] [Related]
7. Improvement of cell response of the poly(lactic-co-glycolic acid)/calcium phosphate cement composite scaffold with unidirectional pore structure by the surface immobilization of collagen via plasma treatment. He F; Li J; Ye J Colloids Surf B Biointerfaces; 2013 Mar; 103():209-16. PubMed ID: 23201739 [TBL] [Abstract][Full Text] [Related]
8. Incorporation of bioactive glass in calcium phosphate cement: material characterization and in vitro degradation. Renno AC; Nejadnik MR; van de Watering FC; Crovace MC; Zanotto ED; Hoefnagels JP; Wolke JG; Jansen JA; van den Beucken JJ J Biomed Mater Res A; 2013 Aug; 101(8):2365-73. PubMed ID: 23364896 [TBL] [Abstract][Full Text] [Related]
9. Toward accelerated bone regeneration by altering poly(D,L-lactic-co-glycolic) acid porogen content in calcium phosphate cement. van Houdt CI; Preethanath RS; van Oirschot BA; Zwarts PH; Ulrich DJ; Anil S; Jansen JA; van den Beucken JJ J Biomed Mater Res A; 2016 Feb; 104(2):483-92. PubMed ID: 26454146 [TBL] [Abstract][Full Text] [Related]
10. Porous calcium phosphate cement for alveolar bone regeneration. Félix Lanao RP; Hoekstra JW; Wolke JG; Leeuwenburgh SC; Plachokova AS; Boerman OC; van den Beucken JJ; Jansen JA J Tissue Eng Regen Med; 2014 Jun; 8(6):473-82. PubMed ID: 22777771 [TBL] [Abstract][Full Text] [Related]
11. Size matters: effects of PLGA-microsphere size in injectable CPC/PLGA on bone formation. Liao H; Félix Lanao RP; van den Beucken JJ; Zhou N; Both SK; Wolke JG; Jansen JA J Tissue Eng Regen Med; 2016 Aug; 10(8):669-78. PubMed ID: 24170734 [TBL] [Abstract][Full Text] [Related]
12. PLGA microsphere/calcium phosphate cement composites for tissue engineering: in vitro release and degradation characteristics. Habraken WJ; Wolke JG; Mikos AG; Jansen JA J Biomater Sci Polym Ed; 2008; 19(9):1171-88. PubMed ID: 18727859 [TBL] [Abstract][Full Text] [Related]
13. Engineering of bone using porous calcium phosphate cement and bone marrow stromal cells for maxillary sinus augmentation with simultaneous implant placement in goats. Zou D; Guo L; Lu J; Zhang X; Wei J; Liu C; Zhang Z; Jiang X Tissue Eng Part A; 2012 Jul; 18(13-14):1464-78. PubMed ID: 22452368 [TBL] [Abstract][Full Text] [Related]
14. The biological performance of injectable calcium phosphate/PLGA cement in osteoporotic rats. van de Watering FC; Laverman P; Cuijpers VM; Gotthardt M; Bronkhorst EM; Boerman OC; Jansen JA; van den Beucken JJ Biomed Mater; 2013 Jun; 8(3):035012. PubMed ID: 23619345 [TBL] [Abstract][Full Text] [Related]
15. RANKL delivery from calcium phosphate containing PLGA microspheres. Félix Lanao RP; Bosco R; Leeuwenburgh SC; Kersten-Niessen MJ; Wolke JG; van den Beucken JJ; Jansen JA J Biomed Mater Res A; 2013 Nov; 101(11):3123-30. PubMed ID: 23529979 [TBL] [Abstract][Full Text] [Related]
16. Efficacy of the biomaterials 3wt%-nanostrontium-hydroxyapatite-enhanced calcium phosphate cement (nanoSr-CPC) and nanoSr-CPC-incorporated simvastatin-loaded poly(lactic-co-glycolic-acid) microspheres in osteogenesis improvement: An explorative multi-phase experimental in vitro/vivo study. Masaeli R; Jafarzadeh Kashi TS; Dinarvand R; Rakhshan V; Shahoon H; Hooshmand B; Mashhadi Abbas F; Raz M; Rajabnejad A; Eslami H; Khoshroo K; Tahriri M; Tayebi L Mater Sci Eng C Mater Biol Appl; 2016 Dec; 69():171-83. PubMed ID: 27612702 [TBL] [Abstract][Full Text] [Related]
17. Accelerated calcium phosphate cement degradation due to incorporation of glucono-delta-lactone microparticles. Félix Lanao RP; Sariibrahimoglu K; Wang H; Wolke JG; Jansen JA; Leeuwenburgh SC Tissue Eng Part A; 2014 Jan; 20(1-2):378-88. PubMed ID: 24041246 [TBL] [Abstract][Full Text] [Related]
18. Porous calcium phosphate-poly (lactic-co-glycolic) acid composite bone cement: A viable tunable drug delivery system. Roy A; Jhunjhunwala S; Bayer E; Fedorchak M; Little SR; Kumta PN Mater Sci Eng C Mater Biol Appl; 2016 Feb; 59():92-101. PubMed ID: 26652353 [TBL] [Abstract][Full Text] [Related]
19. Tuning the degradation rate of calcium phosphate cements by incorporating mixtures of polylactic-co-glycolic acid microspheres and glucono-delta-lactone microparticles. Sariibrahimoglu K; An J; van Oirschot BA; Nijhuis AW; Eman RM; Alblas J; Wolke JG; van den Beucken JJ; Leeuwenburgh SC; Jansen JA Tissue Eng Part A; 2014 Nov; 20(21-22):2870-82. PubMed ID: 24819744 [TBL] [Abstract][Full Text] [Related]