These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
179 related articles for article (PubMed ID: 22335831)
1. Multiphoton lithography of nanocrystalline platinum and palladium for site-specific catalysis in 3D microenvironments. Zarzar LD; Swartzentruber BS; Harper JC; Dunphy DR; Brinker CJ; Aizenberg J; Kaehr B J Am Chem Soc; 2012 Mar; 134(9):4007-10. PubMed ID: 22335831 [TBL] [Abstract][Full Text] [Related]
2. Probing the origin of in situ generated nanoparticles as sustainable oxidation catalysts. Hinde CS; Van Aswegen S; Collins G; Holmes JD; Hor TS; Raja R Dalton Trans; 2013 Sep; 42(35):12600-5. PubMed ID: 23698390 [TBL] [Abstract][Full Text] [Related]
3. Microwave-assisted versatile hydrogenation of carbonyl compounds using supported metal nanoparticles. Gracia MJ; Campelo JM; Losada E; Luque R; Marinas JM; Romero AA Org Biomol Chem; 2009 Dec; 7(23):4821-4. PubMed ID: 19907769 [TBL] [Abstract][Full Text] [Related]
4. Monodispersed Pd-Ni nanoparticles: composition control synthesis and catalytic properties in the Miyaura-Suzuki reaction. Wu Y; Wang D; Zhao P; Niu Z; Peng Q; Li Y Inorg Chem; 2011 Mar; 50(6):2046-8. PubMed ID: 21268607 [TBL] [Abstract][Full Text] [Related]
5. Synthesis and characterization of multimetallic Pd/Au and Pd/Au/FePt core/shell nanoparticles. Mazumder V; Chi M; More KL; Sun S Angew Chem Int Ed Engl; 2010 Dec; 49(49):9368-72. PubMed ID: 20853383 [No Abstract] [Full Text] [Related]
6. Palladium concave nanocubes with high-index facets and their enhanced catalytic properties. Jin M; Zhang H; Xie Z; Xia Y Angew Chem Int Ed Engl; 2011 Aug; 50(34):7850-4. PubMed ID: 21732512 [No Abstract] [Full Text] [Related]
7. Seed-mediated synthesis of hexameric octahedral PtPdCu nanocrystals with high electrocatalytic performance. Mao J; Cao T; Chen Y; Wu Y; Chen C; Peng Q; Wang D; Li Y Chem Commun (Camb); 2015 Oct; 51(84):15406-9. PubMed ID: 26344362 [TBL] [Abstract][Full Text] [Related]
8. Manipulating the oxygen reduction activity of platinum shells with shape-controlled palladium nanocrystal cores. Shao M; He G; Peles A; Odell JH; Zeng J; Su D; Tao J; Yu T; Zhu Y; Xia Y Chem Commun (Camb); 2013 Oct; 49(79):9030-2. PubMed ID: 23982335 [TBL] [Abstract][Full Text] [Related]
9. Size control and catalytic activity of bio-supported palladium nanoparticles. Søbjerg LS; Lindhardt AT; Skrydstrup T; Finster K; Meyer RL Colloids Surf B Biointerfaces; 2011 Jul; 85(2):373-8. PubMed ID: 21481574 [TBL] [Abstract][Full Text] [Related]
10. Truncated ditetragonal gold prisms as nanofacet activators of catalytic platinum. Lu F; Zhang Y; Zhang L; Zhang Y; Wang JX; Adzic RR; Stach EA; Gang O J Am Chem Soc; 2011 Nov; 133(45):18074-7. PubMed ID: 21999634 [TBL] [Abstract][Full Text] [Related]
11. Electrochemical synthesis of core-shell catalysts for electrocatalytic applications. Kulp C; Chen X; Puschhof A; Schwamborn S; Somsen C; Schuhmann W; Bron M Chemphyschem; 2010 Sep; 11(13):2854-61. PubMed ID: 20408156 [TBL] [Abstract][Full Text] [Related]
12. A universal approach to the synthesis of noble metal nanodendrites and their catalytic properties. Mohanty A; Garg N; Jin R Angew Chem Int Ed Engl; 2010 Jul; 49(29):4962-6. PubMed ID: 20540128 [No Abstract] [Full Text] [Related]
13. Palladium nanoparticles supported onto ionic carbon nanotubes as robust recyclable catalysts in an ionic liquid. Chun YS; Shin JY; Song CE; Lee SG Chem Commun (Camb); 2008 Feb; (8):942-4. PubMed ID: 18283343 [TBL] [Abstract][Full Text] [Related]
14. A highly reactive and sinter-resistant catalytic system based on platinum nanoparticles embedded in the inner surfaces of CeO2 hollow fibers. Yoon K; Yang Y; Lu P; Wan D; Peng HC; Stamm Masias K; Fanson PT; Campbell CT; Xia Y Angew Chem Int Ed Engl; 2012 Sep; 51(38):9543-6. PubMed ID: 22930556 [No Abstract] [Full Text] [Related]
15. Metal-organic framework-immobilized polyhedral metal nanocrystals: reduction at solid-gas interface, metal segregation, core-shell structure, and high catalytic activity. Aijaz A; Akita T; Tsumori N; Xu Q J Am Chem Soc; 2013 Nov; 135(44):16356-9. PubMed ID: 24138338 [TBL] [Abstract][Full Text] [Related]
16. Hydrogen absorption in the core/shell interface of Pd/Pt nanoparticles. Kobayashi H; Yamauchi M; Kitagawa H; Kubota Y; Kato K; Takata M J Am Chem Soc; 2008 Feb; 130(6):1818-9. PubMed ID: 18193876 [No Abstract] [Full Text] [Related]
17. From self-assembly of platinum nanoparticles to nanostructured materials. Surendran G; Apostolescu G; Tokumoto M; Prouzet E; Ramos L; Beaunier P; Kooyman PJ; Etcheberry A; Remita H Small; 2005 Oct; 1(10):964-7. PubMed ID: 17193378 [No Abstract] [Full Text] [Related]
18. 1.7 nm platinum nanoparticles: synthesis with glucose starch, characterization and catalysis. Engelbrekt C; Sørensen KH; Lübcke T; Zhang J; Li Q; Pan C; Bjerrum NJ; Ulstrup J Chemphyschem; 2010 Sep; 11(13):2844-53. PubMed ID: 20715275 [TBL] [Abstract][Full Text] [Related]