These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 22336040)

  • 1. Studies of lithium ion dynamics in paramagnetic cathode materials using (6)Li 1D selective inversion methods.
    Davis LJ; He XJ; Bain AD; Goward GR
    Solid State Nucl Magn Reson; 2012 Apr; 42():26-32. PubMed ID: 22336040
    [TBL] [Abstract][Full Text] [Related]  

  • 2. NMR relaxometry as a versatile tool to study Li ion dynamics in potential battery materials.
    Kuhn A; Kunze M; Sreeraj P; Wiemhöfer HD; Thangadurai V; Wilkening M; Heitjans P
    Solid State Nucl Magn Reson; 2012 Apr; 42():2-8. PubMed ID: 22364761
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In situ NMR of lithium ion batteries: bulk susceptibility effects and practical considerations.
    Trease NM; Zhou L; Chang HJ; Zhu BY; Grey CP
    Solid State Nucl Magn Reson; 2012 Apr; 42():62-70. PubMed ID: 22381594
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Study of local structure and Li dynamics in Li(4+x)Ti(5)O(12) (0 ≤ x ≤ 5) using (6)Li and (7)Li NMR spectroscopy.
    Hain H; Scheuermann M; Heinzmann R; Wünsche L; Hahn H; Indris S
    Solid State Nucl Magn Reson; 2012 Apr; 42():9-16. PubMed ID: 22154742
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural and dynamic characterization of Li(12)Si(7) and Li(12)Ge(7) using solid state NMR.
    Dupke S; Langer T; Pöttgen R; Winter M; Eckert H
    Solid State Nucl Magn Reson; 2012 Apr; 42():17-25. PubMed ID: 21996453
    [TBL] [Abstract][Full Text] [Related]  

  • 6. X-ray absorption spectroscopy study of the LixFePO4 cathode during cycling using a novel electrochemical in situ reaction cell.
    Deb A; Bergmann U; Cairns EJ; Cramer SP
    J Synchrotron Radiat; 2004 Nov; 11(Pt 6):497-504. PubMed ID: 15496738
    [TBL] [Abstract][Full Text] [Related]  

  • 7. (7)Li NMR and two-dimensional exchange study of lithium dynamics in monoclinic Li(3)V(2)(PO(4))(3).
    Cahill LS; Chapman RP; Britten JF; Goward GR
    J Phys Chem B; 2006 Apr; 110(14):7171-7. PubMed ID: 16599482
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Solid-state NMR in materials for energy storage and conversion.
    Grey CP; Goward GR
    Solid State Nucl Magn Reson; 2012 Apr; 42():1. PubMed ID: 22445132
    [No Abstract]   [Full Text] [Related]  

  • 9. Understanding (6)Li MAS NMR spectra of Li(2)MSiO(4) materials (M = Mn, Fe, Zn).
    Mali G; Rangus M; Sirisopanaporn C; Dominko R
    Solid State Nucl Magn Reson; 2012 Apr; 42():33-41. PubMed ID: 22033467
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Isotropic high field NMR spectra of Li-ion battery materials with anisotropy >1 MHz.
    Hung I; Zhou L; Pourpoint F; Grey CP; Gan Z
    J Am Chem Soc; 2012 Feb; 134(4):1898-901. PubMed ID: 22235803
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of nanorod-structured Li[Ni0.54 Co0.16 Mn0.30 ]O2 with conventional cathode materials for Li-ion batteries.
    Noh HJ; Ju JW; Sun YK
    ChemSusChem; 2014 Jan; 7(1):245-52. PubMed ID: 24127348
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mesoporous and nanowire Co3O4 as negative electrodes for rechargeable lithium batteries.
    Shaju KM; Jiao F; Débart A; Bruce PG
    Phys Chem Chem Phys; 2007 Apr; 9(15):1837-42. PubMed ID: 17415496
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydrothermal synthesis and electrochemical properties of Li₃V₂(PO₄)₃/C-based composites for lithium-ion batteries.
    Sun C; Rajasekhara S; Dong Y; Goodenough JB
    ACS Appl Mater Interfaces; 2011 Sep; 3(9):3772-6. PubMed ID: 21877744
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An unsymmetrical lithium-ion pathway between charge and discharge processes in a two-phase stage of Li4Ti5O12.
    Li D; He P; Li H; Zhou H
    Phys Chem Chem Phys; 2012 Jul; 14(25):9086-91. PubMed ID: 22635051
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Contribution of Li-ion batteries to the environmental impact of electric vehicles.
    Notter DA; Gauch M; Widmer R; Wäger P; Stamp A; Zah R; Althaus HJ
    Environ Sci Technol; 2010 Sep; 44(17):6550-6. PubMed ID: 20695466
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High capacity and excellent stability of lithium ion battery anode using interface-controlled binder-free multiwall carbon nanotubes grown on copper.
    Lahiri I; Oh SW; Hwang JY; Cho S; Sun YK; Banerjee R; Choi W
    ACS Nano; 2010 Jun; 4(6):3440-6. PubMed ID: 20441185
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The influence of size on phase morphology and Li-ion mobility in nanosized lithiated anatase TiO2.
    Wagemaker M; Borghols WJ; van Eck ER; Kentgens AP; Kearley GJ; Mulder FM
    Chemistry; 2007; 13(7):2023-8. PubMed ID: 17154318
    [TBL] [Abstract][Full Text] [Related]  

  • 18. New lithium iron pyrophosphate as 3.5 V class cathode material for lithium ion battery.
    Nishimura S; Nakamura M; Natsui R; Yamada A
    J Am Chem Soc; 2010 Oct; 132(39):13596-7. PubMed ID: 20831186
    [TBL] [Abstract][Full Text] [Related]  

  • 19. First-Principles Study of Lithium Borocarbide as a Cathode Material for Rechargeable Li ion Batteries.
    Xu Q; Ban C; Dillon AC; Wei SH; Zhao Y
    J Phys Chem Lett; 2011 May; 2(10):1129-32. PubMed ID: 26295314
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ag(6)Mo(2)O(7)F(3)Cl: a new silver cathode material for enhanced ICD primary lithium batteries.
    Sauvage F; Bodenez V; Tarascon JM; Poeppelmeier KR
    Inorg Chem; 2010 Jul; 49(14):6461-7. PubMed ID: 20545306
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.