BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 22336099)

  • 1. Ruminal microbe of biohydrogenation of trans-vaccenic acid to stearic acid in vitro.
    Li D; Wang JQ; Bu DP
    BMC Res Notes; 2012 Feb; 5():97. PubMed ID: 22336099
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biohydrogenation of C18 unsaturated fatty acids to stearic acid by a strain of Butyrivibrio hungatei from the bovine rumen.
    van de Vossenberg JL; Joblin KN
    Lett Appl Microbiol; 2003; 37(5):424-8. PubMed ID: 14633116
    [TBL] [Abstract][Full Text] [Related]  

  • 3. As yet uncultured bacteria phylogenetically classified as Prevotella, Lachnospiraceae incertae sedis and unclassified Bacteroidales, Clostridiales and Ruminococcaceae may play a predominant role in ruminal biohydrogenation.
    Huws SA; Kim EJ; Lee MR; Scott MB; Tweed JK; Pinloche E; Wallace RJ; Scollan ND
    Environ Microbiol; 2011 Jun; 13(6):1500-12. PubMed ID: 21418494
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Augmentation of vaccenate production and suppression of vaccenate biohydrogenation in cultures of mixed ruminal microbes.
    Fukuda S; Suzuki Y; Murai M; Asanuma N; Hino T
    J Dairy Sci; 2006 Mar; 89(3):1043-51. PubMed ID: 16507700
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microbial biohydrogenation of oleic acid to trans isomers in vitro.
    Mosley EE; Powell GL; Riley MB; Jenkins TC
    J Lipid Res; 2002 Feb; 43(2):290-6. PubMed ID: 11861671
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Isomerization of vaccenic acid to cis and trans C18:1 isomers during biohydrogenation by rumen microbes.
    Laverroux S; Glasser F; Gillet M; Joly C; Doreau M
    Lipids; 2011 Sep; 46(9):843-50. PubMed ID: 21706384
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biohydrogenation of linoleic acid by rumen fungi compared with rumen bacteria.
    Nam IS; Garnsworthy PC
    J Appl Microbiol; 2007 Sep; 103(3):551-6. PubMed ID: 17714387
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biohydrogenation of fatty acids and digestibility of fresh alfalfa or alfalfa hay plus sucrose in continuous culture.
    Ribeiro CV; Karnati SK; Eastridge ML
    J Dairy Sci; 2005 Nov; 88(11):4007-17. PubMed ID: 16230707
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ricinoleic acid inhibits methanogenesis and fatty acid biohydrogenation in ruminal digesta from sheep and in bacterial cultures.
    Ramos Morales E; Mata Espinosa MA; McKain N; Wallace RJ
    J Anim Sci; 2012 Dec; 90(13):4943-50. PubMed ID: 22829608
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Clostridium proteoclasticum: A ruminal bacterium that forms stearic acid from linoleic acid.
    John Wallace R; Chaudhary LC; McKain N; McEwan NR; Richardson AJ; Vercoe PE; Walker ND; Paillard D
    FEMS Microbiol Lett; 2006 Dec; 265(2):195-201. PubMed ID: 17147764
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differential biohydrogenation and isomerization of [U-(13)C]oleic and [1-(13)C]oleic acids by mixed ruminal microbes.
    Mosley EE; Nudda A; Corato A; Rossi E; Jenkins T; McGuire MA
    Lipids; 2006 May; 41(5):513-7. PubMed ID: 16933796
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microbial communities involved in anaerobic degradation of unsaturated or saturated long-chain fatty acids.
    Sousa DZ; Pereira MA; Stams AJ; Alves MM; Smidt H
    Appl Environ Microbiol; 2007 Feb; 73(4):1054-64. PubMed ID: 17158619
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rumen ciliate protozoa contain high concentrations of conjugated linoleic acids and vaccenic acid, yet do not hydrogenate linoleic acid or desaturate stearic acid.
    Devillard E; McIntosh FM; Newbold CJ; Wallace RJ
    Br J Nutr; 2006 Oct; 96(4):697-704. PubMed ID: 17010229
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ovine ruminal microbes are capable of biotransforming hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX).
    Eaton HL; De Lorme M; Chaney RL; Craig AM
    Microb Ecol; 2011 Aug; 62(2):274-86. PubMed ID: 21340737
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of high-oil corn or added corn oil on ruminal biohydrogenation of fatty acids and conjugated linoleic acid formation in beef steers fed finishing diets.
    Duckett SK; Andrae JG; Owens FN
    J Anim Sci; 2002 Dec; 80(12):3353-60. PubMed ID: 12542177
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Accumulation of trans C18:1 fatty acids in the rumen after dietary algal supplementation is associated with changes in the Butyrivibrio community.
    Boeckaert C; Vlaeminck B; Fievez V; Maignien L; Dijkstra J; Boon N
    Appl Environ Microbiol; 2008 Nov; 74(22):6923-30. PubMed ID: 18820074
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dilution rate and pH effects on the conversion of oleic acid to trans C18:1 positional isomers in continuous culture.
    AbuGhazaleh AA; Riley MB; Thies EE; Jenkins TC
    J Dairy Sci; 2005 Dec; 88(12):4334-41. PubMed ID: 16291625
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Short communication: docosahexaenoic acid promotes vaccenic acid accumulation in mixed ruminal cultures when incubated with linoleic acid.
    AbuGhazaleh AA; Jenkins TC
    J Dairy Sci; 2004 Apr; 87(4):1047-50. PubMed ID: 15259240
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantification of ruminal Clostridium proteoclasticum by real-time PCR using a molecular beacon approach.
    Paillard D; McKain N; Rincon MT; Shingfield KJ; Givens DI; Wallace RJ
    J Appl Microbiol; 2007 Oct; 103(4):1251-61. PubMed ID: 17897229
    [TBL] [Abstract][Full Text] [Related]  

  • 20. BIOHYDROGENATION OF UNSATURATED FATTY ACIDS BY RUMEN BACTERIA.
    POLAN CE; MCNEILL JJ; TOVE SB
    J Bacteriol; 1964 Oct; 88(4):1056-64. PubMed ID: 14219019
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.