These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 22336199)

  • 1. Rate and breadth of protein evolution are only weakly correlated.
    Naumenko SA; Kondrashov AS
    Biol Direct; 2012 Feb; 7():8. PubMed ID: 22336199
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evolutionary patterns of amino acid substitutions in 12 Drosophila genomes.
    Yampolsky LY; Bouzinier MA
    BMC Genomics; 2010 Dec; 11 Suppl 4(Suppl 4):S10. PubMed ID: 21143793
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Net Evolutionary Loss of Residue Polarity in Drosophilid Protein Cores Indicates Ongoing Optimization of Amino Acid Composition.
    Yampolsky LY; Wolf YI; Bouzinier MA
    Genome Biol Evol; 2017 Oct; 9(10):2879-2892. PubMed ID: 28985302
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Extensive parallelism in protein evolution.
    Bazykin GA; Kondrashov FA; Brudno M; Poliakov A; Dubchak I; Kondrashov AS
    Biol Direct; 2007 Aug; 2():20. PubMed ID: 17705846
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evolutionary analysis of amino acid repeats across the genomes of 12 Drosophila species.
    Huntley MA; Clark AG
    Mol Biol Evol; 2007 Dec; 24(12):2598-609. PubMed ID: 17602168
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Switch in codon bias and increased rates of amino acid substitution in the Drosophila saltans species group.
    Rodríguez-Trelles F; Tarrío R; Ayala FJ
    Genetics; 1999 Sep; 153(1):339-50. PubMed ID: 10471717
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Strong evidence for lineage and sequence specificity of substitution rates and patterns in Drosophila.
    Singh ND; Arndt PF; Clark AG; Aquadro CF
    Mol Biol Evol; 2009 Jul; 26(7):1591-605. PubMed ID: 19351792
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Divergent evolution and molecular adaptation in the Drosophila odorant-binding protein family: inferences from sequence variation at the OS-E and OS-F genes.
    Sánchez-Gracia A; Rozas J
    BMC Evol Biol; 2008 Nov; 8():323. PubMed ID: 19038039
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The evolution of small insertions and deletions in the coding genes of Drosophila melanogaster.
    Chong Z; Zhai W; Li C; Gao M; Gong Q; Ruan J; Li J; Jiang L; Lv X; Hungate E; Wu CI
    Mol Biol Evol; 2013 Dec; 30(12):2699-708. PubMed ID: 24077769
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Site-to-site variation of synonymous substitution rates.
    Pond SK; Muse SV
    Mol Biol Evol; 2005 Dec; 22(12):2375-85. PubMed ID: 16107593
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Conserved proteins are fragile.
    Assis R; Kondrashov AS
    Mol Biol Evol; 2014 Feb; 31(2):419-24. PubMed ID: 24202613
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evolutionary genomics. Fruit fly blitz shows the power of comparative genomics.
    Pennisi E
    Science; 2007 Nov; 318(5852):903. PubMed ID: 17991837
    [No Abstract]   [Full Text] [Related]  

  • 13. Correlated Selection on Amino Acid Deletion and Replacement in Mammalian Protein Sequences.
    Zheng Y; Graur D; Azevedo RBR
    J Mol Evol; 2018 Jul; 86(6):365-378. PubMed ID: 29955898
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Episodic evolution of coadapted sets of amino acid sites in mitochondrial proteins.
    Neverov AD; Popova AV; Fedonin GG; Cheremukhin EA; Klink GV; Bazykin GA
    PLoS Genet; 2021 Jan; 17(1):e1008711. PubMed ID: 33493156
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Positive selection differs between protein secondary structure elements in Drosophila.
    Ridout KE; Dixon CJ; Filatov DA
    Genome Biol Evol; 2010 Jul; 2():166-79. PubMed ID: 20624723
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adaptive evolution and the birth of CTCF binding sites in the Drosophila genome.
    Ni X; Zhang YE; Nègre N; Chen S; Long M; White KP
    PLoS Biol; 2012; 10(11):e1001420. PubMed ID: 23139640
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evolutionary constraint and adaptation in the metabolic network of Drosophila.
    Greenberg AJ; Stockwell SR; Clark AG
    Mol Biol Evol; 2008 Dec; 25(12):2537-46. PubMed ID: 18799713
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Network-level molecular evolutionary analysis of the insulin/TOR signal transduction pathway across 12 Drosophila genomes.
    Alvarez-Ponce D; Aguadé M; Rozas J
    Genome Res; 2009 Feb; 19(2):234-42. PubMed ID: 19141596
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hitchhiking effects of recurrent beneficial amino acid substitutions in the Drosophila melanogaster genome.
    Andolfatto P
    Genome Res; 2007 Dec; 17(12):1755-62. PubMed ID: 17989248
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of co-evolving amino acid residues on topology of phylogenetic trees.
    Sherbakov DY; Triboy TI
    Biochemistry (Mosc); 2007 Dec; 72(12):1363-7. PubMed ID: 18205620
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.