BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

422 related articles for article (PubMed ID: 22336326)

  • 21. Frequency-dependent laminar electroosmotic flow in a closed-end rectangular microchannel.
    Marcos ; Yang C; Ooi KT; Wong TN; Masliyah JH
    J Colloid Interface Sci; 2004 Jul; 275(2):679-98. PubMed ID: 15178303
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Electro-Viscous Effects on Liquid Flow in Microchannels.
    Ren L; Li D; Qu W
    J Colloid Interface Sci; 2001 Jan; 233(1):12-22. PubMed ID: 11112301
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Localized electric field induced transition and miniaturization of two-phase flow patterns inside microchannels.
    Sharma A; Tiwari V; Kumar V; Mandal TK; Bandyopadhyay D
    Electrophoresis; 2014 Oct; 35(20):2930-7. PubMed ID: 25044128
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Nonlinear Smoluchowski velocity for electroosmosis of Power-law fluids over a surface with arbitrary zeta potentials.
    Zhao C; Yang C
    Electrophoresis; 2010 Mar; 31(5):973-9. PubMed ID: 20191559
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Pulsating electric field modulated contact line dynamics of immiscible binary systems in narrow confinements under an electrical double layer phenomenon.
    Mondal PK; Ghosh U; Bandopadhyay A; DasGupta D; Chakraborty S
    Soft Matter; 2014 Nov; 10(42):8512-23. PubMed ID: 25242073
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Helmholtz decomposition coupling rotational to irrotational flow of a viscous fluid.
    Joseph DD
    Proc Natl Acad Sci U S A; 2006 Sep; 103(39):14272-7. PubMed ID: 16983077
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Surface charge-dependent hydrodynamic properties of an electroosmotic slip flow.
    Rezaei M; Azimian AR; Pishevar AR
    Phys Chem Chem Phys; 2018 Dec; 20(48):30365-30375. PubMed ID: 30489580
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Boundary effects on electrophoresis of a colloidal cylinder with a nonuniform zeta potential distribution.
    Hsieh TH; Keh HJ
    J Colloid Interface Sci; 2007 Nov; 315(1):343-54. PubMed ID: 17669415
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Compact model for multi-phase liquid-liquid flows in micro-fluidic devices.
    Jousse F; Lian G; Janes R; Melrose J
    Lab Chip; 2005 Jun; 5(6):646-56. PubMed ID: 15915257
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Dynamic interfacial effect of electroosmotic slip flow with a moving capillary front in hydrophobic circular microchannels.
    Yang J; Lu F; Kwok DY
    J Chem Phys; 2004 Oct; 121(15):7443-8. PubMed ID: 15473818
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effect of viscoelasticity on the flow pattern and the volumetric flow rate in electroosmotic flows through a microchannel.
    Park HM; Lee WM
    Lab Chip; 2008 Jul; 8(7):1163-70. PubMed ID: 18584093
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Electric-double-layer potential distribution in multiple-layer immiscible electrolytes.
    Das S; Hardt S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Aug; 84(2 Pt 1):022502. PubMed ID: 21929048
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The coupling of surface charge and boundary slip at the solid-liquid interface and their combined effect on fluid drag: A review.
    Jing D; Bhushan B
    J Colloid Interface Sci; 2015 Sep; 454():152-79. PubMed ID: 26021432
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Thermocapillary flow in double-layer fluid structures: an effective single-layer model.
    Gupta NR; Haj-Hariri H; Borhan A
    J Colloid Interface Sci; 2006 Jan; 293(1):158-71. PubMed ID: 16054639
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Numerical study of electroosmotic slip flow of fractional Oldroyd-B fluids at high zeta potentials.
    Wang X; Jiang Y; Qiao Y; Xu H; Qi H
    Electrophoresis; 2020 Jun; 41(10-11):769-777. PubMed ID: 31901144
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Study of axial mixing, holdup and slip velocity of dispersed phase in a pulsed sieve plate extraction column using radiotracer technique.
    Ghiyas Ud Din ; Imran Rafiq Chughtai ; Hameed Inayat M; Hussain Khan I
    Appl Radiat Isot; 2009; 67(7-8):1248-53. PubMed ID: 19339193
    [TBL] [Abstract][Full Text] [Related]  

  • 37. On steady two-fluid electroosmotic flow with full interfacial electrostatics.
    Choi W; Sharma A; Qian S; Lim G; Joo SW
    J Colloid Interface Sci; 2011 May; 357(2):521-6. PubMed ID: 21396652
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Numerical analysis of electroosmotic flow in dense regular and random arrays of impermeable, nonconducting spheres.
    Hlushkou D; Seidel-Morgenstern A; Tallarek U
    Langmuir; 2005 Jun; 21(13):6097-112. PubMed ID: 15952866
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Electrophoresis of a colloidal sphere in a spherical cavity with arbitrary zeta potential distributions.
    Keh HJ; Hsieh TH
    Langmuir; 2007 Jul; 23(15):7928-35. PubMed ID: 17569547
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Electroosmotic Flow of Viscoelastic Fluid in a Nanoslit.
    Mei L; Zhang H; Meng H; Qian S
    Micromachines (Basel); 2018 Mar; 9(4):. PubMed ID: 30424089
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 22.