These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

258 related articles for article (PubMed ID: 22336629)

  • 1. Metal sulphides from wastewater: assessing the impact of supersaturation control strategies.
    Mokone TP; van Hille RP; Lewis AE
    Water Res; 2012 May; 46(7):2088-100. PubMed ID: 22336629
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of solution chemistry on particle characteristics during metal sulfide precipitation.
    Mokone TP; van Hille RP; Lewis AE
    J Colloid Interface Sci; 2010 Nov; 351(1):10-8. PubMed ID: 20705300
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Highly efficient removal of Cu(II), Zn(II), Ni(II) and Fe(II) from electroplating wastewater using sulphide from sulphidogenic bioreactor effluent.
    Fang D; Zhang R; Deng W; Li J
    Environ Technol; 2012; 33(13-15):1709-15. PubMed ID: 22988632
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sorption studies of Zn(II) and Cu(II) onto vegetal compost used on reactive mixtures for in situ treatment of acid mine drainage.
    Gibert O; de Pablo J; Cortina JL; Ayora C
    Water Res; 2005 Aug; 39(13):2827-38. PubMed ID: 15992854
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Co-removal of hexavalent chromium during copper precipitation.
    Sun J; Huang JC
    Water Sci Technol; 2002; 46(4-5):413-9. PubMed ID: 12361041
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Separate recovery of copper and zinc from acid mine drainage using biogenic sulfide.
    Sahinkaya E; Gungor M; Bayrakdar A; Yucesoy Z; Uyanik S
    J Hazard Mater; 2009 Nov; 171(1-3):901-6. PubMed ID: 19608339
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Innovative developments in the selective removal and reuse of heavy metals from wastewaters.
    Veeken AH; Rulkens WH
    Water Sci Technol; 2003; 47(10):9-16. PubMed ID: 12862211
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Treatment of sulphide containing wastewater with sulphur recovery in a novel reverse fluidized loop reactor (RFLR).
    Krishnakumar B; Majumdar S; Manilal VB; Haridas A
    Water Res; 2005 Feb; 39(4):639-47. PubMed ID: 15707637
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sulphate-reducing laboratory-scale high-rate anaerobic reactors for treatment of metal- and sulphate-containing mine wastewater.
    Tuppurainen KO; Väisänen AO; Rintala JA
    Environ Technol; 2002 Jun; 23(6):599-608. PubMed ID: 12118612
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sulfidogenic fluidized bed treatment of real acid mine drainage water.
    Sahinkaya E; Gunes FM; Ucar D; Kaksonen AH
    Bioresour Technol; 2011 Jan; 102(2):683-9. PubMed ID: 20832297
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of sulfidogenic up-flow and down-flow fluidized-bed reactors for the biotreatment of acidic metal-containing wastewater.
    Sahinkaya E; Gungor M
    Bioresour Technol; 2010 Dec; 101(24):9508-14. PubMed ID: 20724148
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metal precipitation in an ethanol-fed, fixed-bed sulphate-reducing bioreactor.
    Kousi P; Remoundaki E; Hatzikioseyian A; Battaglia-Brunet F; Joulian C; Kousteni V; Tsezos M
    J Hazard Mater; 2011 May; 189(3):677-84. PubMed ID: 21316850
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A modular continuous flow reactor system for the selective bio-oxidation of iron and precipitation of schwertmannite from mine-impacted waters.
    Hedrich S; Johnson DB
    Bioresour Technol; 2012 Feb; 106():44-9. PubMed ID: 22197072
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pilot scale investigation of zinc and sulphate removal from industrial discharges by biological sulphate reduction with molasses as electron donor.
    Liamleam W; Oo ZK; Thai PT; Annachhatre AP
    Environ Technol; 2009 Nov; 30(12):1229-39. PubMed ID: 19950465
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization, morphology and composition of biofilm and precipitates from a sulphate-reducing fixed-bed reactor.
    Remoundaki E; Kousi P; Joulian C; Battaglia-Brunet F; Hatzikioseyian A; Tsezos M
    J Hazard Mater; 2008 May; 153(1-2):514-24. PubMed ID: 17931772
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Copper and zinc decontamination from single- and binary-metal solutions using hydroxyapatite.
    Corami A; Mignardi S; Ferrini V
    J Hazard Mater; 2007 Jul; 146(1-2):164-70. PubMed ID: 17204364
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Removal of phosphorus from agricultural wastewaters using adsorption media prepared from acid mine drainage sludge.
    Sibrell PL; Montgomery GA; Ritenour KL; Tucker TW
    Water Res; 2009 May; 43(8):2240-50. PubMed ID: 19269663
    [TBL] [Abstract][Full Text] [Related]  

  • 19. DEAMOX--new biological nitrogen removal process based on anaerobic ammonia oxidation coupled to sulphide-driven conversion of nitrate into nitrite.
    Kalyuzhnyi S; Gladchenko M; Mulder A; Versprille B
    Water Res; 2006 Nov; 40(19):3637-45. PubMed ID: 16893559
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On-line estimation of the dissolved zinc concentration during ZnS precipitation in a continuous stirred tank reactor (CSTR).
    Grootscholten TI; Keesman KJ; Lens PN
    Water Sci Technol; 2008; 57(10):1627-33. PubMed ID: 18520021
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.