These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 22336629)

  • 21. Precipitation and recovery of metal sulfides from metal containing acidic wastewater in a sulfidogenic down-flow fluidized bed reactor.
    Gallegos-Garcia M; Celis LB; Rangel-Méndez R; Razo-Flores E
    Biotechnol Bioeng; 2009 Jan; 102(1):91-9. PubMed ID: 18846546
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A simple method for removing chelated copper from wastewaters: Ca(OH)(2)-based replacement-precipitation.
    Jiang S; Fu F; Qu J; Xiong Y
    Chemosphere; 2008 Oct; 73(5):785-90. PubMed ID: 18653210
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Utilization of fly ash to improve the quality of the acid mine drainage generated by oxidation of a sulphide-rich mining waste: column experiments.
    Pérez-López R; Nieto JM; de Almodóvar GR
    Chemosphere; 2007 Apr; 67(8):1637-46. PubMed ID: 17257643
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Removal turbidity and separation of heavy metals using electrocoagulation-electroflotation technique A case study.
    Merzouk B; Gourich B; Sekki A; Madani K; Chibane M
    J Hazard Mater; 2009 May; 164(1):215-22. PubMed ID: 18799259
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Performance of sulfidogenic anaerobic baffled reactor (ABR) treating acidic and zinc-containing wastewater.
    Bayrakdar A; Sahinkaya E; Gungor M; Uyanik S; Atasoy AD
    Bioresour Technol; 2009 Oct; 100(19):4354-60. PubMed ID: 19428238
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Biotreatment of acidic zinc- and copper-containing wastewater using ethanol-fed sulfidogenic anaerobic baffled reactor.
    Sahinkaya E; Yucesoy Z
    Bioprocess Biosyst Eng; 2010 Oct; 33(8):989-97. PubMed ID: 20369260
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Influence of recirculation on the performance of anaerobic sequencing batch biofilm reactor (AnSBBR) treating hypersaline composite chemical wastewater.
    Mohan SV; Lalit Babu V; Vijaya Bhaskar Y; Sarma PN
    Bioresour Technol; 2007 May; 98(7):1373-9. PubMed ID: 16824749
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Removal of sulphates acidity and iron from acid mine drainage in a bench scale biochemical treatment system.
    Prasad D; Henry JG
    Environ Technol; 2009 Feb; 30(2):151-60. PubMed ID: 19278156
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Remediation and selective recovery of metals from acidic mine waters using novel modular bioreactors.
    Hedrich S; Johnson DB
    Environ Sci Technol; 2014 Oct; 48(20):12206-12. PubMed ID: 25251612
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Anaerobic sulphate-reducing microbial process using UASB reactor for heavy metals decontamination.
    de Lima AC; Gonçalves MM; Granato M; Leite SG
    Environ Technol; 2001 Mar; 22(3):261-70. PubMed ID: 11346283
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Precipitation of arsenic sulphide from acidic water in a fixed-film bioreactor.
    Battaglia-Brunet F; Crouzet C; Burnol A; Coulon S; Morin D; Joulian C
    Water Res; 2012 Aug; 46(12):3923-33. PubMed ID: 22608606
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effective removal of coordinated copper from wastewater using a new dithiocarbamate-type supramolecular heavy metal precipitant.
    Fu F; Zeng H; Cai Q; Qiu R; Yu J; Xiong Y
    Chemosphere; 2007 Nov; 69(11):1783-9. PubMed ID: 17624403
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Precipitation of Zn(II), Cu(II) and Pb(II) at bench-scale using biogenic hydrogen sulfide from the utilization of volatile fatty acids.
    Alvarez MT; Crespo C; Mattiasson B
    Chemosphere; 2007 Jan; 66(9):1677-83. PubMed ID: 16979215
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Precipitation of dissolved sulphide in pulp and paper mill wastewater by electrocoagulation.
    Vepsäläinen M; Selin J; Rantala P; Pulliainen M; Särkkä H; Kuhmonen K; Bhatnagar A; Sillanpää M
    Environ Technol; 2011; 32(11-12):1393-400. PubMed ID: 21970181
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Regeneration of barium carbonate from barium sulphide in a pilot-scale bubbling column reactor and utilization for acid mine drainage.
    Mulopo J; Zvimba JN; Swanepoel H; Bologo LT; Maree J
    Water Sci Technol; 2012; 65(2):324-31. PubMed ID: 22233912
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A study on removal characteristics of heavy metals from aqueous solution by fly ash.
    Cho H; Oh D; Kim K
    J Hazard Mater; 2005 Dec; 127(1-3):187-95. PubMed ID: 16125307
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Heavy metals (Cd, Pb, Zn, Ni, Cu and Cr(III)) removal from water in Malaysia: post treatment by high quality limestone.
    Aziz HA; Adlan MN; Ariffin KS
    Bioresour Technol; 2008 Apr; 99(6):1578-83. PubMed ID: 17540556
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Dynamics of Fe(II), sulphur and phosphate in pilot-scale constructed wetlands treating a sulphate-rich chlorinated hydrocarbon contaminated groundwater.
    Wu S; Chen Z; Braeckevelt M; Seeger EM; Dong R; Kästner M; Paschke H; Hahn A; Kayser G; Kuschk P
    Water Res; 2012 Apr; 46(6):1923-32. PubMed ID: 22289675
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Performance of a membrane bioreactor used for the treatment of wastewater contaminated with heavy metals.
    Katsou E; Malamis S; Loizidou M
    Bioresour Technol; 2011 Mar; 102(6):4325-32. PubMed ID: 21269823
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Copper remediation by Eichhornia spp. and sulphate-reducing bacteria.
    Dave S; Damani M; Tipre D
    J Hazard Mater; 2010 Jan; 173(1-3):231-5. PubMed ID: 19747776
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.