These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 22336731)

  • 21. Metal toxicity and biodiversity in serpentine soils: application of bioassay tests and microarthropod index.
    Visioli G; Menta C; Gardi C; Conti FD
    Chemosphere; 2013 Jan; 90(3):1267-73. PubMed ID: 23107056
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effects of short-chain chlorinated paraffins on soil organisms.
    Bezchlebová J; Cernohlávková J; Kobeticová K; Lána J; Sochová I; Hofman J
    Ecotoxicol Environ Saf; 2007 Jun; 67(2):206-11. PubMed ID: 17382391
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Leg deformities of oribatid mites as an indicator of environmental pollution.
    Eeva T; Penttinen R
    Sci Total Environ; 2009 Aug; 407(16):4771-6. PubMed ID: 19481780
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effect of heavy metals on substrate utilization pattern, biomass, and activity of microbial communities in a reclaimed mining wasteland of red soil area.
    Liao M; Xie XM
    Ecotoxicol Environ Saf; 2007 Feb; 66(2):217-23. PubMed ID: 16488009
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Heavy metal exposure, reproductive activity, and demographic patterns in white-footed mice (Peromyscus leucopus) inhabiting a contaminated floodplain wetland.
    Levengood JM; Heske EJ
    Sci Total Environ; 2008 Jan; 389(2-3):320-8. PubMed ID: 17900661
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Computational improvements reveal great bacterial diversity and high metal toxicity in soil.
    Gans J; Wolinsky M; Dunbar J
    Science; 2005 Aug; 309(5739):1387-90. PubMed ID: 16123304
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Decomposition of heavy metal contaminated nettles (Urtica dioica L.) in soils subjected to heavy metal pollution by river sediments.
    Khan KS; Joergensen RG
    Chemosphere; 2006 Nov; 65(6):981-7. PubMed ID: 16677685
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Heavy metal displacement in salt-water-irrigated soil during phytoremediation.
    Wahla IH; Kirkham MB
    Environ Pollut; 2008 Sep; 155(2):271-83. PubMed ID: 18180088
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Biochemical parameters and bacterial species richness in soils contaminated by sludge-borne metals and remediated with inorganic soil amendments.
    Mench M; Renella G; Gelsomino A; Landi L; Nannipieri P
    Environ Pollut; 2006 Nov; 144(1):24-31. PubMed ID: 16516362
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effects of heavy metals on earthworms along contamination gradients in organic rich soils.
    Lukkari T; Taavitsainen M; Väisänen A; Haimi J
    Ecotoxicol Environ Saf; 2004 Nov; 59(3):340-8. PubMed ID: 15388274
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Patterns of metal soil contamination and changes in terrestrial cryptogamic communities.
    Cuny D; Denayer FO; de Foucault B; Schumacker R; Colein P; Van Haluwyn C
    Environ Pollut; 2004 May; 129(2):289-97. PubMed ID: 14987814
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Assessing heavy metal sources in agricultural soils of an European Mediterranean area by multivariate analysis.
    Micó C; Recatalá L; Peris M; Sánchez J
    Chemosphere; 2006 Oct; 65(5):863-72. PubMed ID: 16635506
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Impacts of sewage irrigation on heavy metal distribution and contamination in Beijing, China.
    Liu WH; Zhao JZ; Ouyang ZY; Söderlund L; Liu GH
    Environ Int; 2005 Aug; 31(6):805-12. PubMed ID: 15979146
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Growth and reproduction of earthworms in ultramafic soils.
    Maleri R; Reinecke SA; Mesjasz-Przybylowicz J; Reinecke AJ
    Arch Environ Contam Toxicol; 2007 Apr; 52(3):363-70. PubMed ID: 17354041
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Geochemical features of topsoils in the Gaza Strip: natural occurrence and anthropogenic inputs.
    Shomar BH; Müller G; Yahya A
    Environ Res; 2005 Jul; 98(3):372-82. PubMed ID: 15910793
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effects of soil properties on food web accumulation of heavy metals to the wood mouse (Apodemus sylvaticus).
    van den Brink N; Lammertsma D; Dimmers W; Boerwinkel MC; van der Hout A
    Environ Pollut; 2010 Jan; 158(1):245-51. PubMed ID: 19647912
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Assessment of heavy metal bioavailability in contaminated sediments and soils using green fluorescent protein-based bacterial biosensors.
    Liao VH; Chien MT; Tseng YY; Ou KL
    Environ Pollut; 2006 Jul; 142(1):17-23. PubMed ID: 16298031
    [TBL] [Abstract][Full Text] [Related]  

  • 38. An improved method for determination of heavy metal bioavailability in contaminated soil.
    Lin SH; Lai SL; Leu HG
    Environ Technol; 2001 Jun; 22(6):731-9. PubMed ID: 11482394
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Vegetation shapes aboveground invertebrate communities more than soil properties and pollution: a preliminary investigation on a metal-contaminated site.
    Ozaki S; Fritsch C; Mora F; Cornier T; Scheifler R; Raoul F
    Environ Sci Pollut Res Int; 2022 Jan; 29(2):2792-2805. PubMed ID: 34378128
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A GIS technology based potential eco-risk assessment of metals in urban soils in Beijing, China.
    Wang M; Bai Y; Chen W; Markert B; Peng C; Ouyang Z
    Environ Pollut; 2012 Feb; 161():235-42. PubMed ID: 22230091
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.