These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 2233712)

  • 1. Temperature-sensitive DNA mutant of Chinese hamster ovary cells with a thermolabile ribonucleotide reductase activity.
    Wojcik BE; Dermody JJ; Ozer HL; Mun B; Mathews CK
    Mol Cell Biol; 1990 Nov; 10(11):5688-99. PubMed ID: 2233712
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bromodeoxyuridine mutagenesis, ribonucleotide reductase activity, and deoxyribonucleotide pools in hydroxyurea-resistant mutants.
    Ashman CR; Reddy GP; Davidson RL
    Somatic Cell Genet; 1981 Nov; 7(6):751-68. PubMed ID: 7034251
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regulation of ribonucleotide reduction by deoxyribonucleotides in intact Chinese hamster ovary cells.
    Hunting D; Henderson JF
    Can J Biochem; 1981 Oct; 59(10):830-7. PubMed ID: 7032674
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of temperature-sensitive DNA- mutants of Chinese hamster cells affected in cellular and viral DNA synthesis.
    Dermody JJ; Wojcik BE; Du H; Ozer HL
    Mol Cell Biol; 1986 Dec; 6(12):4594-601. PubMed ID: 3796611
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of altered ribonucleotide concentrations on ribonucleotide reduction in intact Chinese hamster ovary cells.
    Hunting D; Hordern J; Henderson JF
    Can J Biochem; 1981 Oct; 59(10):821-9. PubMed ID: 7032673
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cell cycle-dependent variations in deoxyribonucleotide metabolism among Chinese hamster cell lines bearing the Thy- mutator phenotype.
    Mun BJ; Mathews CK
    Mol Cell Biol; 1991 Jan; 11(1):20-6. PubMed ID: 1986219
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DNA precursor pools and ribonucleotide reductase activity: distribution between the nucleus and cytoplasm of mammalian cells.
    Leeds JM; Slabaugh MB; Mathews CK
    Mol Cell Biol; 1985 Dec; 5(12):3443-50. PubMed ID: 3915777
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ribonucleotide reductase activity and deoxyribonucleoside triphosphate metabolism during the cell cycle of S49 wild-type and mutant mouse T-lymphoma cells.
    Albert DA; Gudas LJ
    J Biol Chem; 1985 Jan; 260(1):679-84. PubMed ID: 2981227
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Selection and characterization of mutant S49 T-lymphoma cell lines resistant to phosphonoformic acid: evidence for inhibition of ribonucleotide reductase.
    Albert DA; Gudas LJ
    J Cell Physiol; 1986 May; 127(2):281-7. PubMed ID: 2939095
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Defective DNA replication and repair associated with decreases in deoxyribonucleotide pools in a mouse cell mutant with thermolabile ubiquitin-activating enzyme E1.
    Aoki F; Nakabayashi K; Wataya Y; Kankawa S; Kaneda S; Ayusawa D; Seno T
    J Biochem; 1999 Nov; 126(5):845-51. PubMed ID: 10544276
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Determination of deoxyribonucleoside triphosphate pool sizes in ribonucleotide reductase cDNA transfected human KB cells.
    Zhou BS; Ker R; Ho R; Yu J; Zhao YR; Shih J; Yen Y
    Biochem Pharmacol; 1998 May; 55(10):1657-65. PubMed ID: 9634002
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mutator phenotypes in mammalian cell mutants with distinct biochemical defects and abnormal deoxyribonucleoside triphosphate pools.
    Weinberg G; Ullman B; Martin DW
    Proc Natl Acad Sci U S A; 1981 Apr; 78(4):2447-51. PubMed ID: 7017732
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ribonucleotide reductase and deoxyribonucleotide pools.
    Reichard P
    Basic Life Sci; 1985; 31():33-45. PubMed ID: 3888178
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Correlation between levels of ferritin and the iron-containing component of ribonucleotide reductase in hydroxyurea-sensitive, -resistant, and -revertant cell lines.
    Hurta RA; Wright JA
    Biochem Cell Biol; 1991 Sep; 69(9):635-42. PubMed ID: 1793565
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Selection of aphidicolin-resistant CHO cells with altered levels of ribonucleotide reductase.
    Sabourin CL; Bates PF; Glatzer L; Chang CC; Trosko JE; Boezi JA
    Somatic Cell Genet; 1981 Mar; 7(2):255-68. PubMed ID: 6794165
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stimulation of mutagenesis by proportional deoxyribonucleoside triphosphate accumulation in Escherichia coli.
    Wheeler LJ; Rajagopal I; Mathews CK
    DNA Repair (Amst); 2005 Dec; 4(12):1450-6. PubMed ID: 16207537
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ribonucleotide reductase association with mammalian liver mitochondria.
    Chimploy K; Song S; Wheeler LJ; Mathews CK
    J Biol Chem; 2013 May; 288(18):13145-55. PubMed ID: 23504325
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Vaccinia virus ribonucleotide reductase. Correlation between deoxyribonucleotide supply and demand.
    Howell ML; Roseman NA; Slabaugh MB; Mathews CK
    J Biol Chem; 1993 Apr; 268(10):7155-62. PubMed ID: 8463252
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Coupled ribonucleoside diphosphate reduction, channeling, and incorporation into DNA of mammalian cells.
    veer Reddy GP; Pardee AB
    J Biol Chem; 1982 Nov; 257(21):12526-31. PubMed ID: 6752137
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ribonucleotide reductase, a possible agent in deoxyribonucleotide pool asymmetries induced by hypoxia.
    Chimploy K; Tassotto ML; Mathews CK
    J Biol Chem; 2000 Dec; 275(50):39267-71. PubMed ID: 11006282
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.