BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 22337428)

  • 1. Biomimetic scaffolds: implications for craniofacial regeneration.
    Yuan J; Cao Y; Liu W
    J Craniofac Surg; 2012 Jan; 23(1):294-7. PubMed ID: 22337428
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Three-dimensional printing of bone repair and replacement materials: impact on craniofacial surgery.
    Ricci JL; Clark EA; Murriky A; Smay JE
    J Craniofac Surg; 2012 Jan; 23(1):304-8. PubMed ID: 22337431
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biomimetic collagen scaffolds for human bone cell growth and differentiation.
    Yang XB; Bhatnagar RS; Li S; Oreffo RO
    Tissue Eng; 2004; 10(7-8):1148-59. PubMed ID: 15363171
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Porous zirconia/hydroxyapatite scaffolds for bone reconstruction.
    An SH; Matsumoto T; Miyajima H; Nakahira A; Kim KH; Imazato S
    Dent Mater; 2012 Dec; 28(12):1221-31. PubMed ID: 23018082
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Novel biomimetic tripolymer scaffolds consisting of chitosan, collagen type 1, and hyaluronic acid for bone marrow-derived human mesenchymal stem cells-based bone tissue engineering.
    Mathews S; Bhonde R; Gupta PK; Totey S
    J Biomed Mater Res B Appl Biomater; 2014 Nov; 102(8):1825-34. PubMed ID: 24723571
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Novel hydroxyapatite/chitosan bilayered scaffold for osteochondral tissue-engineering applications: Scaffold design and its performance when seeded with goat bone marrow stromal cells.
    Oliveira JM; Rodrigues MT; Silva SS; Malafaya PB; Gomes ME; Viegas CA; Dias IR; Azevedo JT; Mano JF; Reis RL
    Biomaterials; 2006 Dec; 27(36):6123-37. PubMed ID: 16945410
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bone repair using periodontal ligament progenitor cell-seeded constructs.
    Tour G; Wendel M; Moll G; Tcacencu I
    J Dent Res; 2012 Aug; 91(8):789-94. PubMed ID: 22736447
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tissue engineering scaffolds for the regeneration of craniofacial bone.
    Chan WD; Perinpanayagam H; Goldberg HA; Hunter GK; Dixon SJ; Santos GC; Rizkalla AS
    J Can Dent Assoc; 2009 Jun; 75(5):373-7. PubMed ID: 19531334
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bone augmentation with autologous periosteal cells and two different calcium phosphate scaffolds under an occlusive titanium barrier: an experimental study in rabbits.
    Maréchal M; Eyckmans J; Schrooten J; Schepers E; Luyten FP; van Steenberghe D
    J Periodontol; 2008 May; 79(5):896-904. PubMed ID: 18454669
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Craniofacial bone tissue engineering.
    Petrovic V; Zivkovic P; Petrovic D; Stefanovic V
    Oral Surg Oral Med Oral Pathol Oral Radiol; 2012 Sep; 114(3):e1-9. PubMed ID: 22862985
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Preparation and characterization of a multilayer biomimetic scaffold for bone tissue engineering.
    Kong L; Ao Q; Wang A; Gong K; Wang X; Lu G; Gong Y; Zhao N; Zhang X
    J Biomater Appl; 2007 Nov; 22(3):223-39. PubMed ID: 17255157
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of bone extracellular matrix synthesized in vitro on the osteoblastic differentiation of marrow stromal cells.
    Datta N; Holtorf HL; Sikavitsas VI; Jansen JA; Mikos AG
    Biomaterials; 2005 Mar; 26(9):971-7. PubMed ID: 15369685
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Laminated electrospun nHA/PHB-composite scaffolds mimicking bone extracellular matrix for bone tissue engineering.
    Chen Z; Song Y; Zhang J; Liu W; Cui J; Li H; Chen F
    Mater Sci Eng C Mater Biol Appl; 2017 Mar; 72():341-351. PubMed ID: 28024596
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biomimetic component coating on 3D scaffolds using high bioactivity of mesoporous bioactive ceramics.
    Yun HS; Kim SH; Khang D; Choi J; Kim HH; Kang M
    Int J Nanomedicine; 2011; 6():2521-31. PubMed ID: 22072886
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biomaterials for craniofacial bone engineering.
    Tevlin R; McArdle A; Atashroo D; Walmsley GG; Senarath-Yapa K; Zielins ER; Paik KJ; Longaker MT; Wan DC
    J Dent Res; 2014 Dec; 93(12):1187-95. PubMed ID: 25139365
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Engineering craniofacial scaffolds.
    Hollister SJ; Lin CY; Saito E; Lin CY; Schek RD; Taboas JM; Williams JM; Partee B; Flanagan CL; Diggs A; Wilke EN; Van Lenthe GH; Müller R; Wirtz T; Das S; Feinberg SE; Krebsbach PH
    Orthod Craniofac Res; 2005 Aug; 8(3):162-73. PubMed ID: 16022718
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biomimetic fabrication of a three-level hierarchical calcium phosphate/collagen/hydroxyapatite scaffold for bone tissue engineering.
    Zhou C; Ye X; Fan Y; Ma L; Tan Y; Qing F; Zhang X
    Biofabrication; 2014 Sep; 6(3):035013. PubMed ID: 24873777
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Osteoinduction and proliferation of bone-marrow stromal cells in three-dimensional poly (ε-caprolactone)/ hydroxyapatite/collagen scaffolds.
    Wang T; Yang X; Qi X; Jiang C
    J Transl Med; 2015 May; 13():152. PubMed ID: 25952675
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Taking cues from the extracellular matrix to design bone-mimetic regenerative scaffolds.
    Curry AS; Pensa NW; Barlow AM; Bellis SL
    Matrix Biol; 2016; 52-54():397-412. PubMed ID: 26940231
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Increasing the pore sizes of bone-mimetic electrospun scaffolds comprised of polycaprolactone, collagen I and hydroxyapatite to enhance cell infiltration.
    Phipps MC; Clem WC; Grunda JM; Clines GA; Bellis SL
    Biomaterials; 2012 Jan; 33(2):524-34. PubMed ID: 22014462
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.