These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
259 related articles for article (PubMed ID: 22337586)
1. Systematic identification of the HSP90 candidate regulated proteome. Wu Z; Gholami AM; Kuster B Mol Cell Proteomics; 2012 Jun; 11(6):M111.016675. PubMed ID: 22337586 [TBL] [Abstract][Full Text] [Related]
2. Posttranslational modification and conformational state of heat shock protein 90 differentially affect binding of chemically diverse small molecule inhibitors. Beebe K; Mollapour M; Scroggins B; Prodromou C; Xu W; Tokita M; Taldone T; Pullen L; Zierer BK; Lee MJ; Trepel J; Buchner J; Bolon D; Chiosis G; Neckers L Oncotarget; 2013 Jul; 4(7):1065-74. PubMed ID: 23867252 [TBL] [Abstract][Full Text] [Related]
3. Prospective identification of resistance mechanisms to HSP90 inhibition in KRAS mutant cancer cells. Rouhi A; Miller C; Grasedieck S; Reinhart S; Stolze B; Döhner H; Kuchenbauer F; Bullinger L; Fröhling S; Scholl C Oncotarget; 2017 Jan; 8(5):7678-7690. PubMed ID: 28032595 [TBL] [Abstract][Full Text] [Related]
4. Heat shock protein 90 inhibition depletes LATS1 and LATS2, two regulators of the mammalian hippo tumor suppressor pathway. Huntoon CJ; Nye MD; Geng L; Peterson KL; Flatten KS; Haluska P; Kaufmann SH; Karnitz LM Cancer Res; 2010 Nov; 70(21):8642-50. PubMed ID: 20841485 [TBL] [Abstract][Full Text] [Related]
5. Hsp90 inhibition differentially destabilises MAP kinase and TGF-beta signalling components in cancer cells revealed by kinase-targeted chemoproteomics. Haupt A; Joberty G; Bantscheff M; Fröhlich H; Stehr H; Schweiger MR; Fischer A; Kerick M; Boerno ST; Dahl A; Lappe M; Lehrach H; Gonzalez C; Drewes G; Lange BM BMC Cancer; 2012 Jan; 12():38. PubMed ID: 22277058 [TBL] [Abstract][Full Text] [Related]
6. Molecular imaging of the efficacy of heat shock protein 90 inhibitors in living subjects. Chan CT; Paulmurugan R; Gheysens OS; Kim J; Chiosis G; Gambhir SS Cancer Res; 2008 Jan; 68(1):216-26. PubMed ID: 18172314 [TBL] [Abstract][Full Text] [Related]
7. Quantitative proteomics reveals that Hsp90 inhibition preferentially targets kinases and the DNA damage response. Sharma K; Vabulas RM; Macek B; Pinkert S; Cox J; Mann M; Hartl FU Mol Cell Proteomics; 2012 Mar; 11(3):M111.014654. PubMed ID: 22167270 [TBL] [Abstract][Full Text] [Related]
8. The anti-myeloma activity of a novel purine scaffold HSP90 inhibitor PU-H71 is via inhibition of both HSP90A and HSP90B1. Usmani SZ; Bona RD; Chiosis G; Li Z J Hematol Oncol; 2010 Oct; 3():40. PubMed ID: 20977755 [TBL] [Abstract][Full Text] [Related]
9. Differential effects of Hsp90 inhibition on protein kinases regulating signal transduction pathways required for myoblast differentiation. Yun BG; Matts RL Exp Cell Res; 2005 Jul; 307(1):212-23. PubMed ID: 15922741 [TBL] [Abstract][Full Text] [Related]
10. Suppression of the mTOR-raptor signaling pathway by the inhibitor of heat shock protein 90 geldanamycin. Ohji G; Hidayat S; Nakashima A; Tokunaga C; Oshiro N; Yoshino K; Yokono K; Kikkawa U; Yonezawa K J Biochem; 2006 Jan; 139(1):129-35. PubMed ID: 16428328 [TBL] [Abstract][Full Text] [Related]
11. Proteome-wide changes induced by the Hsp90 inhibitor, geldanamycin in anaplastic large cell lymphoma cells. Schumacher JA; Crockett DK; Elenitoba-Johnson KS; Lim MS Proteomics; 2007 Aug; 7(15):2603-16. PubMed ID: 17610208 [TBL] [Abstract][Full Text] [Related]
12. Hsp90 inhibition by PU-H71 induces apoptosis through endoplasmic reticulum stress and mitochondrial pathway in cancer cells and overcomes the resistance conferred by Bcl-2. Gallerne C; Prola A; Lemaire C Biochim Biophys Acta; 2013 Jun; 1833(6):1356-66. PubMed ID: 23485394 [TBL] [Abstract][Full Text] [Related]
13. Heat shock protein 90 (Hsp90) regulates the stability of transforming growth factor beta-activated kinase 1 (TAK1) in interleukin-1beta-induced cell signaling. Shi L; Zhang Z; Fang S; Xu J; Liu J; Shen J; Fang F; Luo L; Yin Z Mol Immunol; 2009 Feb; 46(4):541-50. PubMed ID: 18950863 [TBL] [Abstract][Full Text] [Related]
14. UBR1 promotes protein kinase quality control and sensitizes cells to Hsp90 inhibition. Sultana R; Theodoraki MA; Caplan AJ Exp Cell Res; 2012 Jan; 318(1):53-60. PubMed ID: 21983172 [TBL] [Abstract][Full Text] [Related]
15. Inhibition of heat shock protein 90 impairs epidermal growth factor-mediated signaling in gastric cancer cells and reduces tumor growth and vascularization in vivo. Lang SA; Klein D; Moser C; Gaumann A; Glockzin G; Dahlke MH; Dietmaier W; Bolder U; Schlitt HJ; Geissler EK; Stoeltzing O Mol Cancer Ther; 2007 Mar; 6(3):1123-32. PubMed ID: 17363505 [TBL] [Abstract][Full Text] [Related]
16. Inhibition of heat shock protein 90 function by 17-allylamino-17-demethoxy-geldanamycin in Hodgkin's lymphoma cells down-regulates Akt kinase, dephosphorylates extracellular signal-regulated kinase, and induces cell cycle arrest and cell death. Georgakis GV; Li Y; Rassidakis GZ; Martinez-Valdez H; Medeiros LJ; Younes A Clin Cancer Res; 2006 Jan; 12(2):584-90. PubMed ID: 16428504 [TBL] [Abstract][Full Text] [Related]
17. 17-DMCHAG, a new geldanamycin derivative, inhibits prostate cancer cells through Hsp90 inhibition and survivin downregulation. Wang J; Li Z; Lin Z; Zhao B; Wang Y; Peng R; Wang M; Lu C; Shi G; Shen Y Cancer Lett; 2015 Jun; 362(1):83-96. PubMed ID: 25813406 [TBL] [Abstract][Full Text] [Related]
18. Drug-mediated targeted disruption of multiple protein activities through functional inhibition of the Hsp90 chaperone complex. Stravopodis DJ; Margaritis LH; Voutsinas GE Curr Med Chem; 2007; 14(29):3122-38. PubMed ID: 18220746 [TBL] [Abstract][Full Text] [Related]
19. 17-DMAG induces heat shock protein 90 functional impairment in human bladder cancer cells: knocking down the hallmark traits of malignancy. Karkoulis PK; Stravopodis DJ; Voutsinas GE Tumour Biol; 2016 May; 37(5):6861-73. PubMed ID: 26662567 [TBL] [Abstract][Full Text] [Related]