These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
153 related articles for article (PubMed ID: 22337601)
1. Graphene sheets stabilized on genetically engineered M13 viral templates as conducting frameworks for hybrid energy-storage materials. Oh D; Dang X; Yi H; Allen MA; Xu K; Lee YJ; Belcher AM Small; 2012 Apr; 8(7):1006-11. PubMed ID: 22337601 [TBL] [Abstract][Full Text] [Related]
2. In situ synthesis of high-loading Li4Ti5O12-graphene hybrid nanostructures for high rate lithium ion batteries. Shen L; Yuan C; Luo H; Zhang X; Yang S; Lu X Nanoscale; 2011 Feb; 3(2):572-4. PubMed ID: 21076732 [TBL] [Abstract][Full Text] [Related]
3. Graphene anchored with co(3)o(4) nanoparticles as anode of lithium ion batteries with enhanced reversible capacity and cyclic performance. Wu ZS; Ren W; Wen L; Gao L; Zhao J; Chen Z; Zhou G; Li F; Cheng HM ACS Nano; 2010 Jun; 4(6):3187-94. PubMed ID: 20455594 [TBL] [Abstract][Full Text] [Related]
4. Nonaqueous lithium-ion capacitors with high energy densities using trigol-reduced graphene oxide nanosheets as cathode-active material. Aravindan V; Mhamane D; Ling WC; Ogale S; Madhavi S ChemSusChem; 2013 Dec; 6(12):2240-4. PubMed ID: 23939711 [TBL] [Abstract][Full Text] [Related]
5. Virus-enabled synthesis and assembly of nanowires for lithium ion battery electrodes. Nam KT; Kim DW; Yoo PJ; Chiang CY; Meethong N; Hammond PT; Chiang YM; Belcher AM Science; 2006 May; 312(5775):885-8. PubMed ID: 16601154 [TBL] [Abstract][Full Text] [Related]
6. Fabricating genetically engineered high-power lithium-ion batteries using multiple virus genes. Lee YJ; Yi H; Kim WJ; Kang K; Yun DS; Strano MS; Ceder G; Belcher AM Science; 2009 May; 324(5930):1051-5. PubMed ID: 19342549 [TBL] [Abstract][Full Text] [Related]
7. Programmable assembly of nanoarchitectures using genetically engineered viruses. Huang Y; Chiang CY; Lee SK; Gao Y; Hu EL; De Yoreo J; Belcher AM Nano Lett; 2005 Jul; 5(7):1429-34. PubMed ID: 16178252 [TBL] [Abstract][Full Text] [Related]
8. Carbon nanotubes grown in situ on graphene nanosheets as superior anodes for Li-ion batteries. Chen S; Chen P; Wang Y Nanoscale; 2011 Oct; 3(10):4323-9. PubMed ID: 21879120 [TBL] [Abstract][Full Text] [Related]
9. Mesoporous carbon-coated LiFePO4 nanocrystals co-modified with graphene and Mg2+ doping as superior cathode materials for lithium ion batteries. Wang B; Xu B; Liu T; Liu P; Guo C; Wang S; Wang Q; Xiong Z; Wang D; Zhao XS Nanoscale; 2014 Jan; 6(2):986-95. PubMed ID: 24287590 [TBL] [Abstract][Full Text] [Related]
10. Superior hybrid cathode material containing lithium-excess layered material and graphene for lithium-ion batteries. Jiang KC; Wu XL; Yin YX; Lee JS; Kim J; Guo YG ACS Appl Mater Interfaces; 2012 Sep; 4(9):4858-63. PubMed ID: 22931115 [TBL] [Abstract][Full Text] [Related]
11. Graphene-wrapped MnO2 -graphene nanoribbons as anode materials for high-performance lithium ion batteries. Li L; Raji AR; Tour JM Adv Mater; 2013 Nov; 25(43):6298-302. PubMed ID: 23996876 [TBL] [Abstract][Full Text] [Related]
12. Cobalt ion mediated self-assembly of genetically engineered bacteriophage for biomimetic Co-Pt hybrid material. Lee SK; Yun DS; Belcher AM Biomacromolecules; 2006 Jan; 7(1):14-7. PubMed ID: 16398491 [TBL] [Abstract][Full Text] [Related]
13. Investigation of modified graphene for energy storage applications. Shuvo MA; Khan MA; Karim H; Morton P; Wilson T; Lin Y ACS Appl Mater Interfaces; 2013 Aug; 5(16):7881-5. PubMed ID: 23806171 [TBL] [Abstract][Full Text] [Related]
14. Incorporation of a Metal Oxide Interlayer using a Virus-Templated Assembly for Synthesis of Graphene-Electrode-Based Organic Photovoltaics. Lee YM; Kim W; Kim YH; Kim JK; Jang JR; Choe WS; Park JH; Yoo PJ ChemSusChem; 2015 Jul; 8(14):2385-91. PubMed ID: 25809350 [TBL] [Abstract][Full Text] [Related]
15. Photothermally reduced graphene as high-power anodes for lithium-ion batteries. Mukherjee R; Thomas AV; Krishnamurthy A; Koratkar N ACS Nano; 2012 Sep; 6(9):7867-78. PubMed ID: 22881216 [TBL] [Abstract][Full Text] [Related]
16. A graphene-amorphous FePO4 hollow nanosphere hybrid as a cathode material for lithium ion batteries. Yin Y; Hu Y; Wu P; Zhang H; Cai C Chem Commun (Camb); 2012 Feb; 48(15):2137-9. PubMed ID: 22245812 [TBL] [Abstract][Full Text] [Related]
17. Synthesis of amorphous FeOOH/reduced graphene oxide composite by infrared irradiation and its superior lithium storage performance. Sun Y; Hu X; Luo W; Xu H; Hu C; Huang Y ACS Appl Mater Interfaces; 2013 Oct; 5(20):10145-50. PubMed ID: 24066738 [TBL] [Abstract][Full Text] [Related]
18. Nanomesh-structured ultrathin membranes harnessing the unidirectional alignment of viruses on a graphene-oxide film. Lee YM; Jung B; Kim YH; Park AR; Han S; Choe WS; Yoo PJ Adv Mater; 2014 Jun; 26(23):3899-904. PubMed ID: 24652694 [No Abstract] [Full Text] [Related]
19. Graphene-wrapped sulfur particles as a rechargeable lithium-sulfur battery cathode material with high capacity and cycling stability. Wang H; Yang Y; Liang Y; Robinson JT; Li Y; Jackson A; Cui Y; Dai H Nano Lett; 2011 Jul; 11(7):2644-7. PubMed ID: 21699259 [TBL] [Abstract][Full Text] [Related]
20. Assembly of graphene sheets into hierarchical structures for high-performance energy storage. Yin S; Zhang Y; Kong J; Zou C; Li CM; Lu X; Ma J; Boey FY; Chen X ACS Nano; 2011 May; 5(5):3831-8. PubMed ID: 21510618 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]