BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 22337601)

  • 1. Graphene sheets stabilized on genetically engineered M13 viral templates as conducting frameworks for hybrid energy-storage materials.
    Oh D; Dang X; Yi H; Allen MA; Xu K; Lee YJ; Belcher AM
    Small; 2012 Apr; 8(7):1006-11. PubMed ID: 22337601
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In situ synthesis of high-loading Li4Ti5O12-graphene hybrid nanostructures for high rate lithium ion batteries.
    Shen L; Yuan C; Luo H; Zhang X; Yang S; Lu X
    Nanoscale; 2011 Feb; 3(2):572-4. PubMed ID: 21076732
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Graphene anchored with co(3)o(4) nanoparticles as anode of lithium ion batteries with enhanced reversible capacity and cyclic performance.
    Wu ZS; Ren W; Wen L; Gao L; Zhao J; Chen Z; Zhou G; Li F; Cheng HM
    ACS Nano; 2010 Jun; 4(6):3187-94. PubMed ID: 20455594
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nonaqueous lithium-ion capacitors with high energy densities using trigol-reduced graphene oxide nanosheets as cathode-active material.
    Aravindan V; Mhamane D; Ling WC; Ogale S; Madhavi S
    ChemSusChem; 2013 Dec; 6(12):2240-4. PubMed ID: 23939711
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Virus-enabled synthesis and assembly of nanowires for lithium ion battery electrodes.
    Nam KT; Kim DW; Yoo PJ; Chiang CY; Meethong N; Hammond PT; Chiang YM; Belcher AM
    Science; 2006 May; 312(5775):885-8. PubMed ID: 16601154
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fabricating genetically engineered high-power lithium-ion batteries using multiple virus genes.
    Lee YJ; Yi H; Kim WJ; Kang K; Yun DS; Strano MS; Ceder G; Belcher AM
    Science; 2009 May; 324(5930):1051-5. PubMed ID: 19342549
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Carbon nanotubes grown in situ on graphene nanosheets as superior anodes for Li-ion batteries.
    Chen S; Chen P; Wang Y
    Nanoscale; 2011 Oct; 3(10):4323-9. PubMed ID: 21879120
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Programmable assembly of nanoarchitectures using genetically engineered viruses.
    Huang Y; Chiang CY; Lee SK; Gao Y; Hu EL; De Yoreo J; Belcher AM
    Nano Lett; 2005 Jul; 5(7):1429-34. PubMed ID: 16178252
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mesoporous carbon-coated LiFePO4 nanocrystals co-modified with graphene and Mg2+ doping as superior cathode materials for lithium ion batteries.
    Wang B; Xu B; Liu T; Liu P; Guo C; Wang S; Wang Q; Xiong Z; Wang D; Zhao XS
    Nanoscale; 2014 Jan; 6(2):986-95. PubMed ID: 24287590
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Superior hybrid cathode material containing lithium-excess layered material and graphene for lithium-ion batteries.
    Jiang KC; Wu XL; Yin YX; Lee JS; Kim J; Guo YG
    ACS Appl Mater Interfaces; 2012 Sep; 4(9):4858-63. PubMed ID: 22931115
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Graphene-wrapped MnO2 -graphene nanoribbons as anode materials for high-performance lithium ion batteries.
    Li L; Raji AR; Tour JM
    Adv Mater; 2013 Nov; 25(43):6298-302. PubMed ID: 23996876
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Investigation of modified graphene for energy storage applications.
    Shuvo MA; Khan MA; Karim H; Morton P; Wilson T; Lin Y
    ACS Appl Mater Interfaces; 2013 Aug; 5(16):7881-5. PubMed ID: 23806171
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cobalt ion mediated self-assembly of genetically engineered bacteriophage for biomimetic Co-Pt hybrid material.
    Lee SK; Yun DS; Belcher AM
    Biomacromolecules; 2006 Jan; 7(1):14-7. PubMed ID: 16398491
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photothermally reduced graphene as high-power anodes for lithium-ion batteries.
    Mukherjee R; Thomas AV; Krishnamurthy A; Koratkar N
    ACS Nano; 2012 Sep; 6(9):7867-78. PubMed ID: 22881216
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Incorporation of a Metal Oxide Interlayer using a Virus-Templated Assembly for Synthesis of Graphene-Electrode-Based Organic Photovoltaics.
    Lee YM; Kim W; Kim YH; Kim JK; Jang JR; Choe WS; Park JH; Yoo PJ
    ChemSusChem; 2015 Jul; 8(14):2385-91. PubMed ID: 25809350
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A graphene-amorphous FePO4 hollow nanosphere hybrid as a cathode material for lithium ion batteries.
    Yin Y; Hu Y; Wu P; Zhang H; Cai C
    Chem Commun (Camb); 2012 Feb; 48(15):2137-9. PubMed ID: 22245812
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis of amorphous FeOOH/reduced graphene oxide composite by infrared irradiation and its superior lithium storage performance.
    Sun Y; Hu X; Luo W; Xu H; Hu C; Huang Y
    ACS Appl Mater Interfaces; 2013 Oct; 5(20):10145-50. PubMed ID: 24066738
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Graphene-wrapped sulfur particles as a rechargeable lithium-sulfur battery cathode material with high capacity and cycling stability.
    Wang H; Yang Y; Liang Y; Robinson JT; Li Y; Jackson A; Cui Y; Dai H
    Nano Lett; 2011 Jul; 11(7):2644-7. PubMed ID: 21699259
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assembly of graphene sheets into hierarchical structures for high-performance energy storage.
    Yin S; Zhang Y; Kong J; Zou C; Li CM; Lu X; Ma J; Boey FY; Chen X
    ACS Nano; 2011 May; 5(5):3831-8. PubMed ID: 21510618
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanomesh-structured ultrathin membranes harnessing the unidirectional alignment of viruses on a graphene-oxide film.
    Lee YM; Jung B; Kim YH; Park AR; Han S; Choe WS; Yoo PJ
    Adv Mater; 2014 Jun; 26(23):3899-904. PubMed ID: 24652694
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 9.