BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 22337878)

  • 1. High-capacity Ca2+ binding of human skeletal calsequestrin.
    Sanchez EJ; Lewis KM; Danna BR; Kang C
    J Biol Chem; 2012 Mar; 287(14):11592-601. PubMed ID: 22337878
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparing skeletal and cardiac calsequestrin structures and their calcium binding: a proposed mechanism for coupled calcium binding and protein polymerization.
    Park H; Park IY; Kim E; Youn B; Fields K; Dunker AK; Kang C
    J Biol Chem; 2004 Apr; 279(17):18026-33. PubMed ID: 14871888
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Calsequestrin and the calcium release channel of skeletal and cardiac muscle.
    Beard NA; Laver DR; Dulhunty AF
    Prog Biophys Mol Biol; 2004 May; 85(1):33-69. PubMed ID: 15050380
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phosphorylation of human calsequestrin: implications for calcium regulation.
    Sanchez EJ; Munske GR; Criswell A; Milting H; Dunker AK; Kang C
    Mol Cell Biochem; 2011 Jul; 353(1-2):195-204. PubMed ID: 21416293
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Glycosylation of skeletal calsequestrin: implications for its function.
    Sanchez EJ; Lewis KM; Munske GR; Nissen MS; Kang C
    J Biol Chem; 2012 Jan; 287(5):3042-50. PubMed ID: 22170046
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Calsequestrin binds to monomeric and complexed forms of key calcium-handling proteins in native sarcoplasmic reticulum membranes from rabbit skeletal muscle.
    Glover L; Culligan K; Cala S; Mulvey C; Ohlendieck K
    Biochim Biophys Acta; 2001 Dec; 1515(2):120-32. PubMed ID: 11718668
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Crystal structure of calsequestrin from rabbit skeletal muscle sarcoplasmic reticulum.
    Wang S; Trumble WR; Liao H; Wesson CR; Dunker AK; Kang CH
    Nat Struct Biol; 1998 Jun; 5(6):476-83. PubMed ID: 9628486
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ca(2+)-induced folding and aggregation of skeletal muscle sarcoplasmic reticulum calsequestrin. The involvement of the trifluoperazine-binding site.
    He Z; Dunker AK; Wesson CR; Trumble WR
    J Biol Chem; 1993 Nov; 268(33):24635-41. PubMed ID: 8227022
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Potential adverse interaction of human cardiac calsequestrin.
    Kang C; Nissen MS; Sanchez EJ; Lam KS; Milting H
    Eur J Pharmacol; 2010 Nov; 646(1-3):12-21. PubMed ID: 20713040
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of calsequestrin evaluated from changes in free and total calcium concentrations in the sarcoplasmic reticulum of frog cut skeletal muscle fibres.
    Pape PC; Fénelon K; Lamboley CR; Stachura D
    J Physiol; 2007 May; 581(Pt 1):319-67. PubMed ID: 17331996
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Crystallization and structure-function of calsequestrin.
    Kang C; Trumble WR; Dunker AK
    Methods Mol Biol; 2002; 172():281-94. PubMed ID: 11833354
    [No Abstract]   [Full Text] [Related]  

  • 12. Calsequestrin, a calcium sequestering protein localized at the sarcoplasmic reticulum, is not essential for body-wall muscle function in Caenorhabditis elegans.
    Cho JH; Oh YS; Park KW; Yu J; Choi KY; Shin JY; Kim DH; Park WJ; Hamada T; Kagawa H; Maryon EB; Bandyopadhyay J; Ahnn J
    J Cell Sci; 2000 Nov; 113 ( Pt 22)():3947-58. PubMed ID: 11058082
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deconstructing calsequestrin. Complex buffering in the calcium store of skeletal muscle.
    Royer L; Ríos E
    J Physiol; 2009 Jul; 587(Pt 13):3101-11. PubMed ID: 19403601
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Novel details of calsequestrin gel conformation in situ.
    Perni S; Close M; Franzini-Armstrong C
    J Biol Chem; 2013 Oct; 288(43):31358-62. PubMed ID: 24025332
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Calsequestrin. Structure, function, and evolution.
    Wang Q; Michalak M
    Cell Calcium; 2020 Sep; 90():102242. PubMed ID: 32574906
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of cardiac calsequestrin.
    Slupsky JR; Ohnishi M; Carpenter MR; Reithmeier RA
    Biochemistry; 1987 Oct; 26(20):6539-44. PubMed ID: 3427023
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Surface plasmon resonance studies prove the interaction of skeletal muscle sarcoplasmic reticular Ca(2+) release channel/ryanodine receptor with calsequestrin.
    Herzog A; Szegedi C; Jona I; Herberg FW; Varsanyi M
    FEBS Lett; 2000 Apr; 472(1):73-7. PubMed ID: 10781808
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of human cardiac calsequestrin and its deleterious mutants.
    Kim E; Youn B; Kemper L; Campbell C; Milting H; Varsanyi M; Kang C
    J Mol Biol; 2007 Nov; 373(4):1047-57. PubMed ID: 17881003
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Calsequestrin: more than 'only' a luminal Ca2+ buffer inside the sarcoplasmic reticulum.
    Szegedi C; Sárközi S; Herzog A; Jóna I; Varsányi M
    Biochem J; 1999 Jan; 337 ( Pt 1)(Pt 1):19-22. PubMed ID: 9854019
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The asp-rich region at the carboxyl-terminus of calsequestrin binds to Ca(2+) and interacts with triadin.
    Shin DW; Ma J; Kim DH
    FEBS Lett; 2000 Dec; 486(2):178-82. PubMed ID: 11113462
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.