These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
80 related articles for article (PubMed ID: 2233811)
1. Molecular modeling studies of O2-alkylthymines and O4-alkylthymines in DNA: structures that may be pertinent to the incorporation of the corresponding dAlkTTP into DNA by DNA polymerases in vitro. Loechler EL Mutat Res; 1990; 233(1-2):39-44. PubMed ID: 2233811 [No Abstract] [Full Text] [Related]
2. In vitro miscoding of alkylthymines with DNA and RNA polymerases. Saffhill R Chem Biol Interact; 1985; 53(1-2):121-30. PubMed ID: 2581714 [TBL] [Abstract][Full Text] [Related]
3. A structural rationale for stalling of a replicative DNA polymerase at the most common oxidative thymine lesion, thymine glycol. Aller P; Rould MA; Hogg M; Wallace SS; Doublié S Proc Natl Acad Sci U S A; 2007 Jan; 104(3):814-8. PubMed ID: 17210917 [TBL] [Abstract][Full Text] [Related]
4. Computational Insight into the Differential Mutagenic Patterns of O-Methylthymine Lesions. Bhutani P; Nikkel DJ; Wilson KA; Wetmore SD Chem Res Toxicol; 2019 Oct; 32(10):2107-2117. PubMed ID: 31446753 [TBL] [Abstract][Full Text] [Related]
5. Site-specific gap-misrepair mutagenesis by O4-ethylthymine. Duran HL; Wani AA Biochim Biophys Acta; 1987 Jan; 908(1):60-9. PubMed ID: 3026482 [TBL] [Abstract][Full Text] [Related]
6. The incorporation of O6-methyldeoxyguanosine and O4-methyldeoxythymidine monophosphates into DNA by DNA polymerases I and alpha. Hall JA; Saffhill R Nucleic Acids Res; 1983 Jun; 11(12):4185-93. PubMed ID: 6866769 [TBL] [Abstract][Full Text] [Related]
7. Why do O6-alkylguanine and O4-alkylthymine miscode? The relationship between the structure of DNA containing O6-alkylguanine and O4-alkylthymine and the mutagenic properties of these bases. Swann PF Mutat Res; 1990; 233(1-2):81-94. PubMed ID: 2233815 [TBL] [Abstract][Full Text] [Related]
8. Mutagenic potential of O4-methylthymine in vivo determined by an enzymatic approach to site-specific mutagenesis. Preston BD; Singer B; Loeb LA Proc Natl Acad Sci U S A; 1986 Nov; 83(22):8501-5. PubMed ID: 3464967 [TBL] [Abstract][Full Text] [Related]
9. Role of nucleotide excision repair in processing of O4-alkylthymines in human cells. Klein JC; Bleeker MJ; Roelen HC; Rafferty JA; Margison GP; Brugghe HF; van den Elst H; van der Marel GA; van Boom JH; Kriek E J Biol Chem; 1994 Oct; 269(41):25521-8. PubMed ID: 7929253 [TBL] [Abstract][Full Text] [Related]
10. Comparison of the relative mutagenicities of O-alkylthymines site-specifically incorporated into phi X174 DNA. Preston BD; Singer B; Loeb LA J Biol Chem; 1987 Oct; 262(28):13821-7. PubMed ID: 2958453 [TBL] [Abstract][Full Text] [Related]
11. Site-directed mutagenesis for quantitation of base-base interactions at defined sites. Singer B; Dosanjh MK Mutat Res; 1990; 233(1-2):45-51. PubMed ID: 2233812 [TBL] [Abstract][Full Text] [Related]
12. Structure and photodimerizations of 1-alkylthymines in single crystals. Inaki Y; Mochizuki E; Tohnai N; Yasui N; Miyata M; Kai Y Nucleic Acids Symp Ser; 2000; (44):233-4. PubMed ID: 12903354 [TBL] [Abstract][Full Text] [Related]
13. Hexopyranosylnucleoside 6'-triphosphates are not substrates for DNA polymerases. Mikhailov SN; Efimtseva EV; Padyukova NS; Chidgeavadze ZG; Beabealashvilli RS Nucleic Acids Symp Ser; 1991; (24):17-8. PubMed ID: 1726740 [No Abstract] [Full Text] [Related]
14. [3'-(Tetrazol-2''-yl-3'-deoxythymidine and its 5''-substituted form: synthesis and conformation in the crystalline state. Substrate properties of 3'-(tetrazol-2''-yl)-3'-deoxythymidine-5'-triphosphate in relation to DNA polymerases]. Ostrovskiĭ VA; Studentsov EP; Poplavskiĭ VS; Ivanov NV; Gurskaia GV; Zavodnik VE; Ias'ko MV; Semizarov DG Bioorg Khim; 1995 Jan; 21(1):49-54. PubMed ID: 7710425 [TBL] [Abstract][Full Text] [Related]
15. Translesion synthesis by human DNA polymerase eta across thymine glycol lesions. Kusumoto R; Masutani C; Iwai S; Hanaoka F Biochemistry; 2002 May; 41(19):6090-9. PubMed ID: 11994004 [TBL] [Abstract][Full Text] [Related]
16. Synthesis and DNA-polymerase incorporation of colored 4-selenothymidine triphosphate for polymerase recognition and DNA visualization. Caton-Williams J; Huang Z Angew Chem Int Ed Engl; 2008; 47(9):1723-5. PubMed ID: 18203229 [No Abstract] [Full Text] [Related]
17. Translesion synthesis past guanine(C8)-thymine(N3) intrastrand cross-links catalyzed by selected A- and Y-family polymerases. Lee YA; Lee YC; Geacintov NE; Shafirovich V Mol Biosyst; 2016 May; 12(6):1892-900. PubMed ID: 27102383 [TBL] [Abstract][Full Text] [Related]
18. Recognition of threosyl nucleotides by DNA and RNA polymerases. Kempeneers V; Vastmans K; Rozenski J; Herdewijn P Nucleic Acids Res; 2003 Nov; 31(21):6221-6. PubMed ID: 14576309 [TBL] [Abstract][Full Text] [Related]
19. Flexibility and curvature of DNA duplexes containing O4-methylthymine: implications for DNA repair. Cruzeiro-Hansson L; Goodfellow JM Carcinogenesis; 1994 Aug; 15(8):1525-33. PubMed ID: 8055629 [TBL] [Abstract][Full Text] [Related]