These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
156 related articles for article (PubMed ID: 22338694)
1. Classic maximum entropy recovery of the average joint distribution of apparent FRET efficiency and fluorescence photons for single-molecule burst measurements. DeVore MS; Gull SF; Johnson CK J Phys Chem B; 2012 Apr; 116(13):4006-15. PubMed ID: 22338694 [TBL] [Abstract][Full Text] [Related]
2. Quantitative Single-Molecule Three-Color Förster Resonance Energy Transfer by Photon Distribution Analysis. Barth A; Voith von Voithenberg L; Lamb DC J Phys Chem B; 2019 Aug; 123(32):6901-6916. PubMed ID: 31117611 [TBL] [Abstract][Full Text] [Related]
3. Reconstruction of Calmodulin Single-Molecule FRET States, Dye-Interactions, and CaMKII Peptide Binding by MultiNest and Classic Maximum Entropy. Devore MS; Gull SF; Johnson CK Chem Phys; 2013 Aug; 422():. PubMed ID: 24223465 [TBL] [Abstract][Full Text] [Related]
4. Separating structural heterogeneities from stochastic variations in fluorescence resonance energy transfer distributions via photon distribution analysis. Antonik M; Felekyan S; Gaiduk A; Seidel CA J Phys Chem B; 2006 Apr; 110(13):6970-8. PubMed ID: 16571010 [TBL] [Abstract][Full Text] [Related]
5. Monte Carlo Diffusion-Enhanced Photon Inference: Distance Distributions and Conformational Dynamics in Single-Molecule FRET. Ingargiola A; Weiss S; Lerner E J Phys Chem B; 2018 Dec; 122(49):11598-11615. PubMed ID: 30252475 [TBL] [Abstract][Full Text] [Related]
6. Analysis of photobleaching in single-molecule multicolor excitation and Förster resonance energy transfer measurements. Eggeling C; Widengren J; Brand L; Schaffer J; Felekyan S; Seidel CA J Phys Chem A; 2006 Mar; 110(9):2979-95. PubMed ID: 16509620 [TBL] [Abstract][Full Text] [Related]
7. Disentangling subpopulations in single-molecule FRET and ALEX experiments with photon distribution analysis. Tomov TE; Tsukanov R; Masoud R; Liber M; Plavner N; Nir E Biophys J; 2012 Mar; 102(5):1163-73. PubMed ID: 22404939 [TBL] [Abstract][Full Text] [Related]
8. Detection of structural dynamics by FRET: a photon distribution and fluorescence lifetime analysis of systems with multiple states. Kalinin S; Valeri A; Antonik M; Felekyan S; Seidel CA J Phys Chem B; 2010 Jun; 114(23):7983-95. PubMed ID: 20486698 [TBL] [Abstract][Full Text] [Related]
9. Theory of the energy transfer efficiency and fluorescence lifetime distribution in single-molecule FRET. Gopich IV; Szabo A Proc Natl Acad Sci U S A; 2012 May; 109(20):7747-52. PubMed ID: 22550169 [TBL] [Abstract][Full Text] [Related]
10. Probing complexes with single fluorophores: factors contributing to dispersion of FRET in DNA/RNA duplexes. Cherny DI; Eperon IC; Bagshaw CR Eur Biophys J; 2009 Apr; 38(4):395-405. PubMed ID: 19015840 [TBL] [Abstract][Full Text] [Related]
11. Directional Photonic Wire Mediated by Homo-Förster Resonance Energy Transfer on a DNA Origami Platform. Nicoli F; Barth A; Bae W; Neukirchinger F; Crevenna AH; Lamb DC; Liedl T ACS Nano; 2017 Nov; 11(11):11264-11272. PubMed ID: 29063765 [TBL] [Abstract][Full Text] [Related]
12. Accurate single-pair Förster resonant energy transfer through combination of pulsed interleaved excitation, time correlated single-photon counting, and fluorescence correlation spectroscopy. Rüttinger S; Macdonald R; Krämer B; Koberling F; Roos M; Hildt E J Biomed Opt; 2006; 11(2):024012. PubMed ID: 16674202 [TBL] [Abstract][Full Text] [Related]
13. Intramolecular distances and dynamics from the combined photon statistics of single-molecule FRET and photoinduced electron transfer. Haenni D; Zosel F; Reymond L; Nettels D; Schuler B J Phys Chem B; 2013 Oct; 117(42):13015-28. PubMed ID: 23718771 [TBL] [Abstract][Full Text] [Related]
14. Unraveling Burst Selection Bias in Single-Molecule FRET of Species with Unequal Brightness and Diffusivity. Gopich IV; Chung HS J Phys Chem B; 2024 Jun; 128(23):5576-5589. PubMed ID: 38833567 [TBL] [Abstract][Full Text] [Related]
15. Extracting rate coefficients from single-molecule photon trajectories and FRET efficiency histograms for a fast-folding protein. Chung HS; Gopich IV; McHale K; Cellmer T; Louis JM; Eaton WA J Phys Chem A; 2011 Apr; 115(16):3642-56. PubMed ID: 20509636 [TBL] [Abstract][Full Text] [Related]
16. ABEL-FRET: tether-free single-molecule FRET with hydrodynamic profiling. Wilson H; Wang Q Nat Methods; 2021 Jul; 18(7):816-820. PubMed ID: 34127856 [TBL] [Abstract][Full Text] [Related]
17. Two-photon excited fluorescence energy transfer: a study based on oligonucleotide rulers. Wahlroos R; Toivonen J; Tirri M; Hänninen P J Fluoresc; 2006 May; 16(3):379-86. PubMed ID: 16791502 [TBL] [Abstract][Full Text] [Related]
18. Analysis of Fluorescence Lifetime and Energy Transfer Efficiency in Single-Molecule Photon Trajectories of Fast-Folding Proteins. Chung HS; Louis JM; Gopich IV J Phys Chem B; 2016 Feb; 120(4):680-99. PubMed ID: 26812046 [TBL] [Abstract][Full Text] [Related]
19. Theory and Analysis of Single-Molecule FRET Experiments. Gopich IV; Chung HS Methods Mol Biol; 2022; 2376():247-282. PubMed ID: 34845614 [TBL] [Abstract][Full Text] [Related]
20. Theory of photon statistics in single-molecule Förster resonance energy transfer. Gopich I; Szabo A J Chem Phys; 2005 Jan; 122(1):14707. PubMed ID: 15638691 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]