These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
156 related articles for article (PubMed ID: 22338694)
21. Fluorescence resonance energy transfer (FRET) and competing processes in donor-acceptor substituted DNA strands: a comparative study of ensemble and single-molecule data. Dietrich A; Buschmann V; Müller C; Sauer M J Biotechnol; 2002 Jan; 82(3):211-31. PubMed ID: 11999691 [TBL] [Abstract][Full Text] [Related]
22. Single-pair fluorescence resonance energy transfer on freely diffusing molecules: observation of Förster distance dependence and subpopulations. Deniz AA; Dahan M; Grunwell JR; Ha T; Faulhaber AE; Chemla DS; Weiss S; Schultz PG Proc Natl Acad Sci U S A; 1999 Mar; 96(7):3670-5. PubMed ID: 10097095 [TBL] [Abstract][Full Text] [Related]
23. Characterization of organic fluorophores for in vivo FRET studies based on electroporated molecules. Plochowietz A; Crawford R; Kapanidis AN Phys Chem Chem Phys; 2014 Jul; 16(25):12688-94. PubMed ID: 24837080 [TBL] [Abstract][Full Text] [Related]
24. A distribution-based method to resolve single-molecule Förster resonance energy transfer observations. Backović M; Price ES; Johnson CK; Ralston JP J Chem Phys; 2011 Apr; 134(14):145101. PubMed ID: 21495770 [TBL] [Abstract][Full Text] [Related]
26. Single molecule FRET for the study on structural dynamics of biomolecules. Sugawa M; Arai Y; Iwane AH; Ishii Y; Yanagida T Biosystems; 2007 Apr; 88(3):243-50. PubMed ID: 17276585 [TBL] [Abstract][Full Text] [Related]
27. On the origin of broadening of single-molecule FRET efficiency distributions beyond shot noise limits. Kalinin S; Sisamakis E; Magennis SW; Felekyan S; Seidel CA J Phys Chem B; 2010 May; 114(18):6197-206. PubMed ID: 20397670 [TBL] [Abstract][Full Text] [Related]
28. A Bayesian Nonparametric Approach to Single Molecule Förster Resonance Energy Transfer. Sgouralis I; Madaan S; Djutanta F; Kha R; Hariadi RF; Pressé S J Phys Chem B; 2019 Jan; 123(3):675-688. PubMed ID: 30571128 [TBL] [Abstract][Full Text] [Related]
29. Single-molecule photon stamping FRET spectroscopy study of enzymatic conformational dynamics. He Y; Lu M; Lu HP Phys Chem Chem Phys; 2013 Jan; 15(3):770-5. PubMed ID: 23085845 [TBL] [Abstract][Full Text] [Related]
30. Single-molecule FRET with diffusion and conformational dynamics. Gopich IV; Szabo A J Phys Chem B; 2007 Nov; 111(44):12925-32. PubMed ID: 17929964 [TBL] [Abstract][Full Text] [Related]
31. Defining the limits of single-molecule FRET resolution in TIRF microscopy. Holden SJ; Uphoff S; Hohlbein J; Yadin D; Le Reste L; Britton OJ; Kapanidis AN Biophys J; 2010 Nov; 99(9):3102-11. PubMed ID: 21044609 [TBL] [Abstract][Full Text] [Related]
32. Decoding the pattern of photon colors in single-molecule FRET. Gopich IV; Szabo A J Phys Chem B; 2009 Aug; 113(31):10965-73. PubMed ID: 19588948 [TBL] [Abstract][Full Text] [Related]
33. Excitation/emission-enhanced heterostructure photonic crystal array synergizing with "DD-A" FRET entropy-driven circuit for high-resolution and ultrasensitive analysis of ctDNA. Luo J; Zhang C; Wu M; Yao X; Duan Y; Li Y Biosens Bioelectron; 2024 Nov; 263():116615. PubMed ID: 39106690 [TBL] [Abstract][Full Text] [Related]
34. Accurate FRET measurements within single diffusing biomolecules using alternating-laser excitation. Lee NK; Kapanidis AN; Wang Y; Michalet X; Mukhopadhyay J; Ebright RH; Weiss S Biophys J; 2005 Apr; 88(4):2939-53. PubMed ID: 15653725 [TBL] [Abstract][Full Text] [Related]
35. Orientational and dynamical heterogeneity of rhodamine 6G terminally attached to a DNA helix revealed by NMR and single-molecule fluorescence spectroscopy. Neubauer H; Gaiko N; Berger S; Schaffer J; Eggeling C; Tuma J; Verdier L; Seidel CA; Griesinger C; Volkmer A J Am Chem Soc; 2007 Oct; 129(42):12746-55. PubMed ID: 17900110 [TBL] [Abstract][Full Text] [Related]
36. Combining Graphical and Analytical Methods with Molecular Simulations To Analyze Time-Resolved FRET Measurements of Labeled Macromolecules Accurately. Peulen TO; Opanasyuk O; Seidel CAM J Phys Chem B; 2017 Sep; 121(35):8211-8241. PubMed ID: 28709377 [TBL] [Abstract][Full Text] [Related]
37. FRET Sensor for Erythrosine Dye Based on Organic Nanoparticles: Application to Analysis of Food Stuff. Mahajan PG; Bhopate DP; Kolekar GB; Patil SR J Fluoresc; 2016 Jul; 26(4):1467-78. PubMed ID: 27246163 [TBL] [Abstract][Full Text] [Related]
39. Structural heterogeneity and quantitative FRET efficiency distributions of polyprolines through a hybrid atomistic simulation and Monte Carlo approach. Hoefling M; Lima N; Haenni D; Seidel CA; Schuler B; Grubmüller H PLoS One; 2011; 6(5):e19791. PubMed ID: 21629703 [TBL] [Abstract][Full Text] [Related]
40. Single molecule FRET data analysis procedures for FRET efficiency determination: probing the conformations of nucleic acid structures. Krüger AC; Birkedal V Methods; 2013 Nov; 64(1):36-42. PubMed ID: 23583888 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]