These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 22339011)

  • 41. Bioelectricity production from wastewater treatment in dual chambered microbial fuel cell (MFC) using selectively enriched mixed microflora: Effect of catholyte.
    Venkata Mohan S; Saravanan R; Raghavulu SV; Mohanakrishna G; Sarma PN
    Bioresour Technol; 2008 Feb; 99(3):596-603. PubMed ID: 17321135
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Microbial fuel cells for energy self-sufficient domestic wastewater treatment-a review and discussion from energetic consideration.
    Lefebvre O; Uzabiaga A; Chang IS; Kim BH; Ng HY
    Appl Microbiol Biotechnol; 2011 Jan; 89(2):259-70. PubMed ID: 20931187
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Continuous electricity production from artificial wastewater using a mediator-less microbial fuel cell.
    Moon H; Chang IS; Kim BH
    Bioresour Technol; 2006 Mar; 97(4):621-7. PubMed ID: 15939588
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Electricity generation using chocolate industry wastewater and its treatment in activated sludge based microbial fuel cell and analysis of developed microbial community in the anode chamber.
    Patil SA; Surakasi VP; Koul S; Ijmulwar S; Vivek A; Shouche YS; Kapadnis BP
    Bioresour Technol; 2009 Nov; 100(21):5132-9. PubMed ID: 19539465
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Novel anaerobic digestion process with sludge ozonation for economically feasible power production from biogas.
    Komatsu K; Yasui H; Goel R; Li YY; Noike T
    Water Sci Technol; 2011; 63(7):1467-75. PubMed ID: 21508552
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Microbial fuel cell cathodes: from bottleneck to prime opportunity?
    Rabaey K; Keller J
    Water Sci Technol; 2008; 57(5):655-9. PubMed ID: 18401134
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Factors affecting the performance of microbial fuel cells for sulfide and vanadium (V) treatment.
    Zhang BG; Zhou SG; Zhao HZ; Shi CH; Kong LC; Sun JJ; Yang Y; Ni JR
    Bioprocess Biosyst Eng; 2010 Feb; 33(2):187-94. PubMed ID: 19330358
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Electricity generation from the treatment of wastewater with a hybrid up-flow microbial fuel cell.
    Katuri KP; Scott K
    Biotechnol Bioeng; 2010 Sep; 107(1):52-8. PubMed ID: 20506286
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Enhanced wastewater treatment efficiency through microbially catalyzed oxidation and reduction: synergistic effect of biocathode microenvironment.
    Mohan SV; Srikanth S
    Bioresour Technol; 2011 Nov; 102(22):10210-20. PubMed ID: 21920735
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Integrated function of microbial fuel cell (MFC) as bio-electrochemical treatment system associated with bioelectricity generation under higher substrate load.
    Mohan SV; Raghavulu SV; Peri D; Sarma PN
    Biosens Bioelectron; 2009 Mar; 24(7):2021-7. PubMed ID: 19058958
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Investigating the effects of fluidic connection between microbial fuel cells.
    Winfield J; Ieropoulos I; Greenman J; Dennis J
    Bioprocess Biosyst Eng; 2011 May; 34(4):477-84. PubMed ID: 21136085
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Granular activated carbon based microbial fuel cell for simultaneous decolorization of real dye wastewater and electricity generation.
    Kalathil S; Lee J; Cho MH
    N Biotechnol; 2011 Dec; 29(1):32-7. PubMed ID: 21718812
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Electricity generation from swine wastewater using microbial fuel cells.
    Min B; Kim J; Oh S; Regan JM; Logan BE
    Water Res; 2005 Dec; 39(20):4961-8. PubMed ID: 16293279
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A novel UASB-MFC-BAF integrated system for high strength molasses wastewater treatment and bioelectricity generation.
    Zhang B; Zhao H; Zhou S; Shi C; Wang C; Ni J
    Bioresour Technol; 2009 Dec; 100(23):5687-93. PubMed ID: 19604688
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Nitrilotriacetic acid degradation under microbial fuel cell environment.
    Jang JK; Chang IS; Moon H; Kang KH; Kim BH
    Biotechnol Bioeng; 2006 Nov; 95(4):772-4. PubMed ID: 16958138
    [TBL] [Abstract][Full Text] [Related]  

  • 56. [Trend of "zero energy consumption and wastewater" in fuel ethanol production].
    Mao Z; Zhang J
    Sheng Wu Gong Cheng Xue Bao; 2008 Jun; 24(6):946-9. PubMed ID: 18807974
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The effect of real-time external resistance optimization on microbial fuel cell performance.
    Pinto RP; Srinivasan B; Guiot SR; Tartakovsky B
    Water Res; 2011 Feb; 45(4):1571-8. PubMed ID: 21167550
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A microbial fuel cell equipped with a biocathode for organic removal and denitrification.
    Lefebvre O; Al-Mamun A; Ng HY
    Water Sci Technol; 2008; 58(4):881-5. PubMed ID: 18776625
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A membrane-free baffled microbial fuel cell for cathodic reduction of Cu(II) with electricity generation.
    Tao HC; Li W; Liang M; Xu N; Ni JR; Wu WM
    Bioresour Technol; 2011 Apr; 102(7):4774-8. PubMed ID: 21320773
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Hydrogen and electricity production from a food processing wastewater using fermentation and microbial fuel cell technologies.
    Oh SE; Logan BE
    Water Res; 2005 Nov; 39(19):4673-82. PubMed ID: 16289673
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.