BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 22339283)

  • 1. Identification of an acyl-enzyme intermediate in a meta-cleavage product hydrolase reveals the versatility of the catalytic triad.
    Ruzzini AC; Ghosh S; Horsman GP; Foster LJ; Bolin JT; Eltis LD
    J Am Chem Soc; 2012 Mar; 134(10):4615-24. PubMed ID: 22339283
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The catalytic serine of meta-cleavage product hydrolases is activated differently for C-O bond cleavage than for C-C bond cleavage.
    Ruzzini AC; Horsman GP; Eltis LD
    Biochemistry; 2012 Jul; 51(29):5831-40. PubMed ID: 22747426
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A water-assisted nucleophilic mechanism utilized by BphD, the meta-cleavage product hydrolase in biphenyl degradation.
    Dong L; Zhang S; Liu Y
    J Mol Graph Model; 2017 Sep; 76():448-455. PubMed ID: 28783597
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Investigation of a general base mechanism for ester hydrolysis in C-C hydrolase enzymes of the alpha/beta-hydrolase superfamily: a novel mechanism for the serine catalytic triad.
    Li JJ; Bugg TD
    Org Biomol Chem; 2007 Feb; 5(3):507-13. PubMed ID: 17252134
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The tautomeric half-reaction of BphD, a C-C bond hydrolase. Kinetic and structural evidence supporting a key role for histidine 265 of the catalytic triad.
    Horsman GP; Bhowmik S; Seah SY; Kumar P; Bolin JT; Eltis LD
    J Biol Chem; 2007 Jul; 282(27):19894-904. PubMed ID: 17442675
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The molecular basis for inhibition of BphD, a C-C bond hydrolase involved in polychlorinated biphenyls degradation: large 3-substituents prevent tautomerization.
    Bhowmik S; Horsman GP; Bolin JT; Eltis LD
    J Biol Chem; 2007 Dec; 282(50):36377-85. PubMed ID: 17932031
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A substrate-assisted mechanism of nucleophile activation in a Ser-His-Asp containing C-C bond hydrolase.
    Ruzzini AC; Bhowmik S; Ghosh S; Yam KC; Bolin JT; Eltis LD
    Biochemistry; 2013 Oct; 52(42):7428-38. PubMed ID: 24067021
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Probing the Ser-Ser-Lys catalytic triad mechanism of peptide amidase: computational studies of the ground state, transition state, and intermediate.
    Valiña AL; Mazumder-Shivakumar D; Bruice TC
    Biochemistry; 2004 Dec; 43(50):15657-72. PubMed ID: 15595822
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The key role of a non-active-site residue Met148 on the catalytic efficiency of meta-cleavage product hydrolase BphD.
    Zhou H; Qu Y; Kong C; Shen E; Wang J; Zhang X; Ma Q; Zhou J
    Appl Microbiol Biotechnol; 2013 Dec; 97(24):10399-411. PubMed ID: 23494625
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kinetic and structural insight into the mechanism of BphD, a C-C bond hydrolase from the biphenyl degradation pathway.
    Horsman GP; Ke J; Dai S; Seah SY; Bolin JT; Eltis LD
    Biochemistry; 2006 Sep; 45(37):11071-86. PubMed ID: 16964968
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Purification and characterization of a pH-stable and thermostable biphenyl hydrolase from Rhodococcus sp. R04].
    Yang X; Li P; Zheng Y; Shen C
    Wei Sheng Wu Xue Bao; 2010 Dec; 50(12):1633-41. PubMed ID: 21365917
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evidence for a gem-diol reaction intermediate in bacterial C-C hydrolase enzymes BphD and MhpC from 13C NMR spectroscopy.
    Li JJ; Li C; Blindauer CA; Bugg TD
    Biochemistry; 2006 Oct; 45(41):12461-9. PubMed ID: 17029401
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthetic 6-aryl-2-hydroxy-6-ketohexa-2,4-dienoic acid substrates for C-C hydrolase BphD: investigation of a general base catalytic mechanism.
    Speare DM; Fleming SM; Beckett MN; Li JJ; Bugg TD
    Org Biomol Chem; 2004 Oct; 2(20):2942-50. PubMed ID: 15480459
    [TBL] [Abstract][Full Text] [Related]  

  • 14. X-ray snapshots of serine protease catalysis reveal a tetrahedral intermediate.
    Wilmouth RC; Edman K; Neutze R; Wright PA; Clifton IJ; Schneider TR; Schofield CJ; Hajdu J
    Nat Struct Biol; 2001 Aug; 8(8):689-94. PubMed ID: 11473259
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Crystal structure of 2-hydroxyl-6-oxo-6-phenylhexa-2,4-dienoic acid (HPDA) hydrolase (BphD enzyme) from the Rhodococcus sp. strain RHA1 of the PCB degradation pathway.
    Nandhagopal N; Yamada A; Hatta T; Masai E; Fukuda M; Mitsui Y; Senda T
    J Mol Biol; 2001 Jun; 309(5):1139-51. PubMed ID: 11399084
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The lid domain of the MCP hydrolase DxnB2 contributes to the reactivity toward recalcitrant PCB metabolites.
    Ruzzini AC; Bhowmik S; Yam KC; Ghosh S; Bolin JT; Eltis LD
    Biochemistry; 2013 Aug; 52(33):5685-5695. PubMed ID: 23879719
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Catalytic role for arginine 188 in the C-C hydrolase catalytic mechanism for Escherichia coli MhpC and Burkholderia xenovorans LB400 BphD.
    Li C; Li JJ; Montgomery MG; Wood SP; Bugg TD
    Biochemistry; 2006 Oct; 45(41):12470-9. PubMed ID: 17029402
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure and action of a C-C bond cleaving alpha/beta-hydrolase involved in nicotine degradation.
    Schleberger C; Sachelaru P; Brandsch R; Schulz GE
    J Mol Biol; 2007 Mar; 367(2):409-18. PubMed ID: 17275835
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The thiolase reaction mechanism: the importance of Asn316 and His348 for stabilizing the enolate intermediate of the Claisen condensation.
    Meriläinen G; Poikela V; Kursula P; Wierenga RK
    Biochemistry; 2009 Nov; 48(46):11011-25. PubMed ID: 19842716
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The bacterial
    Kuatsjah E; Chan ACK; Kobylarz MJ; Murphy MEP; Eltis LD
    J Biol Chem; 2017 Nov; 292(44):18290-18302. PubMed ID: 28935670
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.