These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

73 related articles for article (PubMed ID: 22339345)

  • 1. Use of artificial neural networks for assessing parameters of gait symmetry.
    Michalski R; Wit A; Gajewski J
    Acta Bioeng Biomech; 2011; 13(4):65-70. PubMed ID: 22339345
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prediction of ground reaction forces during gait based on kinematics and a neural network model.
    Oh SE; Choi A; Mun JH
    J Biomech; 2013 Sep; 46(14):2372-80. PubMed ID: 23962528
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neural network-based prediction of missing key features in vertical GRF-time recordings.
    Begg RK
    J Med Eng Technol; 2006; 30(5):315-22. PubMed ID: 16980287
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A new training algorithm using artificial neural networks to classify gender-specific dynamic gait patterns.
    Andrade A; Costa M; Paolucci L; Braga A; Pires F; Ugrinowitsch H; Menzel HJ
    Comput Methods Biomech Biomed Engin; 2015; 18(4):382-90. PubMed ID: 23768190
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of speed variation and age on the asymmetry of ground reaction forces and stride parameters of normal gait in children.
    Diopa M; Rahmani A; Belli A; Gautheron V; Geyssant A; Cottalorda J
    J Pediatr Orthop B; 2004 Sep; 13(5):308-14. PubMed ID: 15552557
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gait variability and symmetry in world-class senior and junior race walkers.
    Tucker CB; Hanley B
    J Sports Sci; 2017 Sep; 35(17):1739-1744. PubMed ID: 28282761
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Decomposition of the vertical ground reaction forces during gait on a single force plate.
    Ballaz L; Raison M; Detrembleur C
    J Musculoskelet Neuronal Interact; 2013 Jun; 13(2):236-43. PubMed ID: 23728110
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The novel quantitative technique for assessment of gait symmetry using advanced statistical learning algorithm.
    Wu J; Wu B
    Biomed Res Int; 2015; 2015():528971. PubMed ID: 25705672
    [TBL] [Abstract][Full Text] [Related]  

  • 9. novel Award Third Prize Paper. Assessment of the horizontal,fore-aft component of the ground reaction force from insole pressure patterns by using artificial neural networks.
    Savelberg HH; de Lange AL
    Clin Biomech (Bristol, Avon); 1999 Oct; 14(8):585-92. PubMed ID: 10521642
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Integral method (IM) as a quantitative and objective method to supplement the GMFCS classification of gait in children with cerebral palsy (CP).
    Dziuba A; Bober T; Kobel-Buys K; Stempień M
    Acta Bioeng Biomech; 2013; 15(2):105-11. PubMed ID: 23952138
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gait event detection using a multilayer neural network.
    Miller A
    Gait Posture; 2009 Jun; 29(4):542-5. PubMed ID: 19135372
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison among probabilistic neural network, support vector machine and logistic regression for evaluating the effect of subthalamic stimulation in Parkinson disease on ground reaction force during gait.
    Muniz AM; Liu H; Lyons KE; Pahwa R; Liu W; Nobre FF; Nadal J
    J Biomech; 2010 Mar; 43(4):720-6. PubMed ID: 19914622
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Diagnosis of lameness in dogs by use of artificial neural networks and ground reaction forces obtained during gait analysis.
    Kaijima M; Foutz TL; McClendon RW; Budsberg SC
    Am J Vet Res; 2012 Jul; 73(7):973-8. PubMed ID: 22738048
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lower extremity joint torque predicted by using artificial neural network during vertical jump.
    Liu Y; Shih SM; Tian SL; Zhong YJ; Li L
    J Biomech; 2009 May; 42(7):906-11. PubMed ID: 19261287
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ground reaction forces on stairs: effects of stair inclination and age.
    Stacoff A; Diezi C; Luder G; Stüssi E; Kramers-de Quervain IA
    Gait Posture; 2005 Jan; 21(1):24-38. PubMed ID: 15536031
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Predicting Complete Ground Reaction Forces and Moments During Gait With Insole Plantar Pressure Information Using a Wavelet Neural Network.
    Sim T; Kwon H; Oh SE; Joo SB; Choi A; Heo HM; Kim K; Mun JH
    J Biomech Eng; 2015 Sep; 137(9):. PubMed ID: 26102486
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of four methods of calculating the symmetry of spatial-temporal parameters of gait.
    Błażkiewicz M; Wiszomirska I; Wit A
    Acta Bioeng Biomech; 2014; 16(1):29-35. PubMed ID: 24708092
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Decomposition of three-dimensional ground-reaction forces under both feet during gait.
    Samadi B; Raison M; Ballaz L; Achiche S
    J Musculoskelet Neuronal Interact; 2017 Dec; 17(4):283-291. PubMed ID: 29199187
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Contribution of the six major gait determinants on the vertical center of mass trajectory and the vertical ground reaction force.
    Hayot C; Sakka S; Lacouture P
    Hum Mov Sci; 2013 Apr; 32(2):279-89. PubMed ID: 23725827
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inter-session agreement and reliability of the Global Gait Asymmetry index in healthy adults.
    Cabral S; Fernandes R; Selbie WS; Moniz-Pereira V; Veloso AP
    Gait Posture; 2017 Jan; 51():20-24. PubMed ID: 27693957
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.