These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
112 related articles for article (PubMed ID: 22339467)
1. Carbonyl reduction of bupropion in human liver. Molnari JC; Myers AL Xenobiotica; 2012 Jun; 42(6):550-61. PubMed ID: 22339467 [TBL] [Abstract][Full Text] [Related]
2. Metabolism of bupropion by carbonyl reductases in liver and intestine. Connarn JN; Zhang X; Babiskin A; Sun D Drug Metab Dispos; 2015 Jul; 43(7):1019-27. PubMed ID: 25904761 [TBL] [Abstract][Full Text] [Related]
3. Deeper insight into the reducing biotransformation of bupropion in the human liver. Skarydova L; Tomanova R; Havlikova L; Stambergova H; Solich P; Wsol V Drug Metab Pharmacokinet; 2014; 29(2):177-84. PubMed ID: 24088726 [TBL] [Abstract][Full Text] [Related]
4. Bupropion metabolism by human placenta. Wang X; Abdelrahman DR; Zharikova OL; Patrikeeva SL; Hankins GD; Ahmed MS; Nanovskaya TN Biochem Pharmacol; 2010 Jun; 79(11):1684-90. PubMed ID: 20109440 [TBL] [Abstract][Full Text] [Related]
5. Formation of threohydrobupropion from bupropion is dependent on 11β-hydroxysteroid dehydrogenase 1. Meyer A; Vuorinen A; Zielinska AE; Strajhar P; Lavery GG; Schuster D; Odermatt A Drug Metab Dispos; 2013 Sep; 41(9):1671-8. PubMed ID: 23804523 [TBL] [Abstract][Full Text] [Related]
6. In vitro characterization of the enzymes involved in the metabolism of 1-furan-2-yl-3-pyridin-2-yl-propenone, an anti-inflammatory propenone compound. Lee SK; Kim JH; Seo YM; Kim HC; Kang MJ; Jeong HG; Lee ES; Jeong TC Arch Pharm Res; 2008 Jun; 31(6):764-70. PubMed ID: 18563359 [TBL] [Abstract][Full Text] [Related]
7. Enzymology of a carbonyl reduction clearance pathway for the HIV integrase inhibitor, S-1360: role of human liver cytosolic aldo-keto reductases. Rosemond MJ; St John-Williams L; Yamaguchi T; Fujishita T; Walsh JS Chem Biol Interact; 2004 Mar; 147(2):129-39. PubMed ID: 15013815 [TBL] [Abstract][Full Text] [Related]
8. Metabolism of bupropion by baboon hepatic and placental microsomes. Wang X; Abdelrahman DR; Fokina VM; Hankins GD; Ahmed MS; Nanovskaya TN Biochem Pharmacol; 2011 Aug; 82(3):295-303. PubMed ID: 21570381 [TBL] [Abstract][Full Text] [Related]
9. Biotransformation and detoxification of insecticidal metyrapone analogues by carbonyl reduction in the human liver. Rekka EA; Soldan M; Belai I; Netter KJ; Maser E Xenobiotica; 1996 Dec; 26(12):1221-9. PubMed ID: 9004452 [TBL] [Abstract][Full Text] [Related]
10. An in vitro mechanistic study to elucidate the desipramine/bupropion clinical drug-drug interaction. Reese MJ; Wurm RM; Muir KT; Generaux GT; St John-Williams L; McConn DJ Drug Metab Dispos; 2008 Jul; 36(7):1198-201. PubMed ID: 18420781 [TBL] [Abstract][Full Text] [Related]
11. Development, validation and application of a comprehensive stereoselective LC/MS-MS assay for bupropion and oxidative, reductive, and glucuronide metabolites in human urine. Teitelbaum AM; Flaker AM; Kharasch ED J Chromatogr B Analyt Technol Biomed Life Sci; 2016 Aug; 1027():239-53. PubMed ID: 27318149 [TBL] [Abstract][Full Text] [Related]
12. Purification and characterization of oxidoreductases-catalyzing carbonyl reduction of the tobacco-specific nitrosamine 4-methylnitrosamino-1-(3-pyridyl)-1-butanone (NNK) in human liver cytosol. Atalla A; Breyer-Pfaff U; Maser E Xenobiotica; 2000 Aug; 30(8):755-69. PubMed ID: 11037109 [TBL] [Abstract][Full Text] [Related]
13. Comparison of In Vitro Stereoselective Metabolism of Bupropion in Human, Monkey, Rat, and Mouse Liver Microsomes. Bhattacharya C; Kirby D; Van Stipdonk M; Stratford RE Eur J Drug Metab Pharmacokinet; 2019 Apr; 44(2):261-274. PubMed ID: 30298475 [TBL] [Abstract][Full Text] [Related]
14. Partial purification and characterization of a new human membrane-bound carbonyl reductase playing a role in the deactivation of the anticancer drug oracin. Skarydová L; Skarka A; Novotná R; Zivná L; Martin HJ; Wsól V; Maser E Toxicology; 2009 Oct; 264(1-2):52-60. PubMed ID: 19635524 [TBL] [Abstract][Full Text] [Related]
15. Effect of experimental kidney disease on the functional expression of hepatic reductases. Alshogran OY; Naud J; Ocque AJ; Leblond FA; Pichette V; Nolin TD Drug Metab Dispos; 2015 Jan; 43(1):100-6. PubMed ID: 25332430 [TBL] [Abstract][Full Text] [Related]
16. Reductive metabolism of nabumetone by human liver microsomal and cytosolic fractions: exploratory prediction using inhibitors and substrates as marker probes. Matsumoto K; Hasegawa T; Koyanagi J; Takahashi T; Akimoto M; Sugibayashi K Eur J Drug Metab Pharmacokinet; 2015 Jun; 40(2):127-35. PubMed ID: 24659525 [TBL] [Abstract][Full Text] [Related]
17. Reductive metabolism of the sanguinarine iminium bond by rat liver preparations. Wu Y; Liu ZY; Cao Y; Chen XJ; Zeng JG; Sun ZL Pharmacol Rep; 2013; 65(5):1391-400. PubMed ID: 24399736 [TBL] [Abstract][Full Text] [Related]
18. Purification and characterization of carbonyl reductases from bovine liver cytosol and microsome. The cytosolic enzyme has a novel 3 alpha/17 beta-hydroxysteroid dehydrogenase activity. Terada T; Niwase N; Koyama I; Imamura M; Shinagawa K; Toya H; Mizoguchi T Int J Biochem; 1993 Sep; 25(9):1233-9. PubMed ID: 8224367 [TBL] [Abstract][Full Text] [Related]
19. Carbonyl reduction of warfarin: Identification and characterization of human warfarin reductases. Malátková P; Sokolová S; Chocholoušová Havlíková L; Wsól V Biochem Pharmacol; 2016 Jun; 109():83-90. PubMed ID: 27055738 [TBL] [Abstract][Full Text] [Related]
20. The role of carbonyl reducing enzymes in oxcarbazepine in vitro metabolism in man. Malátková P; Havlíková L; Wsól V Chem Biol Interact; 2014 Sep; 220():241-7. PubMed ID: 25063510 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]