BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

314 related articles for article (PubMed ID: 22339468)

  • 1. Chemistry of polycyclic aromatic hydrocarbons formation from phenyl radical pyrolysis and reaction of phenyl and acetylene.
    Comandini A; Malewicki T; Brezinsky K
    J Phys Chem A; 2012 Mar; 116(10):2409-34. PubMed ID: 22339468
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In situ direct sampling mass spectrometric study on formation of polycyclic aromatic hydrocarbons in toluene pyrolysis.
    Shukla B; Susa A; Miyoshi A; Koshi M
    J Phys Chem A; 2007 Aug; 111(34):8308-24. PubMed ID: 17685593
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reaction dynamics of phenyl radicals in extreme environments: a crossed molecular beam study.
    Gu X; Kaiser RI
    Acc Chem Res; 2009 Feb; 42(2):290-302. PubMed ID: 19053235
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A highly efficient growth mechanism of polycyclic aromatic hydrocarbons.
    Shukla B; Koshi M
    Phys Chem Chem Phys; 2010 Mar; 12(10):2427-37. PubMed ID: 20449356
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Formation mechanism of polycyclic aromatic hydrocarbons beyond the second aromatic ring.
    Kislov VV; Sadovnikov AI; Mebel AM
    J Phys Chem A; 2013 Jun; 117(23):4794-816. PubMed ID: 23672431
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Importance of fundamental sp, sp2, and sp3 hydrocarbon radicals in the growth of polycyclic aromatic hydrocarbons.
    Shukla B; Koshi M
    Anal Chem; 2012 Jun; 84(11):5007-16. PubMed ID: 22582767
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Formation of polycyclic aromatic hydrocarbons from bimolecular reactions of phenyl radicals at high temperatures.
    Constantinidis P; Schmitt HC; Fischer I; Yan B; Rijs AM
    Phys Chem Chem Phys; 2015 Nov; 17(43):29064-71. PubMed ID: 26457393
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Theoretical study of the formation of naphthalene from the radical/π-bond addition between single-ring aromatic hydrocarbons.
    Comandini A; Brezinsky K
    J Phys Chem A; 2011 Jun; 115(22):5547-59. PubMed ID: 21557589
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reactions of o-benzyne with propargyl and benzyl radicals: potential sources of polycyclic aromatic hydrocarbons in combustion.
    Matsugi A; Miyoshi A
    Phys Chem Chem Phys; 2012 Jul; 14(27):9722-8. PubMed ID: 22678346
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A DFT-based investigation of hydrogen abstraction reactions from methylated polycyclic aromatic hydrocarbons.
    Hemelsoet K; Van Speybroeck V; Waroquier M
    Chemphyschem; 2008 Nov; 9(16):2349-58. PubMed ID: 18924221
    [TBL] [Abstract][Full Text] [Related]  

  • 11. First ring formation by radical addition of propargyl to but-1-ene-3-yne in combustion. Theoretical study of the C7H7 radical system.
    Trogolo D; Maranzana A; Ghigo G; Tonachini G
    J Phys Chem A; 2014 Jan; 118(2):427-40. PubMed ID: 24354452
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Radical/π-bond addition between o-benzyne and cyclic C5 hydrocarbons.
    Comandini A; Brezinsky K
    J Phys Chem A; 2012 Feb; 116(4):1183-90. PubMed ID: 22214520
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reaction of phenyl radical with propylene as a possible source of indene and other polycyclic aromatic hydrocarbons: an ab initio/RRKM-ME study.
    Kislov VV; Mebel AM; Aguilera-Iparraguirre J; Green WH
    J Phys Chem A; 2012 Apr; 116(16):4176-91. PubMed ID: 22468969
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Toluene combustion: reaction paths, thermochemical properties, and kinetic analysis for the methylphenyl radical + O2 reaction.
    da Silva G; Chen CC; Bozzelli JW
    J Phys Chem A; 2007 Sep; 111(35):8663-76. PubMed ID: 17696501
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis of polycyclic aromatic hydrocarbons and acetylene polymers in ice: a prebiotic scenario.
    Menor-Salván C; Ruiz-Bermejo M; Osuna-Esteban S; Muñoz-Caro G; Veintemillas-Verdaguer S
    Chem Biodivers; 2008 Dec; 5(12):2729-39. PubMed ID: 19089832
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reactivity of the Indenyl Radical (C
    Zhao L; Prendergast MB; Kaiser RI; Xu B; Lu W; Ablikim U; Ahmed M; Oleinikov AD; Azyazov VN; Mebel AM; Howlader AH; Wnuk SF
    Chemphyschem; 2019 Jun; 20(11):1437-1447. PubMed ID: 30938059
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Toward the Oxidation of the Phenyl Radical and Prevention of PAH Formation in Combustion Systems.
    Parker DS; Kaiser RI; Troy TP; Kostko O; Ahmed M; Mebel AM
    J Phys Chem A; 2015 Jul; 119(28):7145-54. PubMed ID: 25354358
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Selective Formation of Indene through the Reaction of Benzyl Radicals with Acetylene.
    Parker DS; Kaiser RI; Kostko O; Ahmed M
    Chemphyschem; 2015 Jul; 16(10):2091-3. PubMed ID: 25917234
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Indene formation under single-collision conditions from the reaction of phenyl radicals with allene and methylacetylene--a crossed molecular beam and ab initio study.
    Parker DS; Zhang F; Kaiser RI; Kislov VV; Mebel AM
    Chem Asian J; 2011 Nov; 6(11):3035-47. PubMed ID: 21956874
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chemically activated reactions on the C7H5 energy surface: propargyl + diacetylene, i-C5H3 + acetylene, and n-C5H3 + acetylene.
    da Silva G; Trevitt AJ
    Phys Chem Chem Phys; 2011 May; 13(19):8940-52. PubMed ID: 21465038
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.