BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 22339586)

  • 1. Carbon-ring microelectrode arrays for electrochemical imaging of single cell exocytosis: fabrication and characterization.
    Lin Y; Trouillon R; Svensson MI; Keighron JD; Cans AS; Ewing AG
    Anal Chem; 2012 Mar; 84(6):2949-54. PubMed ID: 22339586
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spatially and temporally resolved single-cell exocytosis utilizing individually addressable carbon microelectrode arrays.
    Zhang B; Adams KL; Luber SJ; Eves DJ; Heien ML; Ewing AG
    Anal Chem; 2008 Mar; 80(5):1394-400. PubMed ID: 18232712
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simultaneous study of subcellular exocytosis with individually addressable multiple microelectrodes.
    Wang J; Ewing AG
    Analyst; 2014 Jul; 139(13):3290-5. PubMed ID: 24740449
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluating the diffusion coefficient of dopamine at the cell surface during amperometric detection: disk vs ring microelectrodes.
    Trouillon R; Lin Y; Mellander LJ; Keighron JD; Ewing AG
    Anal Chem; 2013 Jul; 85(13):6421-8. PubMed ID: 23706095
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of Disk and Nanotip Electrodes for Measurement of Single-Cell Amperometry during Exocytotic Release.
    Gu C; Zhang X; Ewing AG
    Anal Chem; 2020 Aug; 92(15):10268-10273. PubMed ID: 32628468
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Highly sensitive detection of exocytotic dopamine release using a gold-nanoparticle-network microelectrode.
    Adams KL; Jena BK; Percival SJ; Zhang B
    Anal Chem; 2011 Feb; 83(3):920-7. PubMed ID: 21175175
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spatial resolution of single-cell exocytosis by microwell-based individually addressable thin film ultramicroelectrode arrays.
    Wang J; Trouillon R; Dunevall J; Ewing AG
    Anal Chem; 2014 May; 86(9):4515-20. PubMed ID: 24712854
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantitative measurement of transmitters in individual vesicles in the cytoplasm of single cells with nanotip electrodes.
    Li X; Majdi S; Dunevall J; Fathali H; Ewing AG
    Angew Chem Int Ed Engl; 2015 Oct; 54(41):11978-82. PubMed ID: 26266819
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Temporal resolution in electrochemical imaging on single PC12 cells using amperometry and voltammetry at microelectrode arrays.
    Zhang B; Heien ML; Santillo MF; Mellander L; Ewing AG
    Anal Chem; 2011 Jan; 83(2):571-7. PubMed ID: 21190375
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Shearforce-based constant-distance scanning electrochemical microscopy as fabrication tool for needle-type carbon-fiber nanoelectrodes.
    Hussien EM; Schuhmann W; Schulte A
    Anal Chem; 2010 Jul; 82(13):5900-5. PubMed ID: 20533837
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fabrication and characterization of laser pulled platinum microelectrodes with controlled geometry.
    Mezour MA; Morin M; Mauzeroll J
    Anal Chem; 2011 Mar; 83(6):2378-82. PubMed ID: 21323390
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microwell device for targeting single cells to electrochemical microelectrodes for high-throughput amperometric detection of quantal exocytosis.
    Liu X; Barizuddin S; Shin W; Mathai CJ; Gangopadhyay S; Gillis KD
    Anal Chem; 2011 Apr; 83(7):2445-51. PubMed ID: 21355543
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrodeposited Gold on Carbon-Fiber Microelectrodes for Enhancing Amperometric Detection of Dopamine Release from Pheochromocytoma Cells.
    Barlow ST; Louie M; Hao R; Defnet PA; Zhang B
    Anal Chem; 2018 Aug; 90(16):10049-10055. PubMed ID: 30047726
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Printed carbon microelectrodes for electrochemical detection of single vesicle release from PC12 cells.
    Yakushenko A; Schnitker J; Wolfrum B
    Anal Chem; 2012 May; 84(10):4613-7. PubMed ID: 22509770
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lithographic Microfabrication of a 16-Electrode Array on a Probe Tip for High Spatial Resolution Electrochemical Localization of Exocytosis.
    Wigström J; Dunevall J; Najafinobar N; Lovrić J; Wang J; Ewing AG; Cans AS
    Anal Chem; 2016 Feb; 88(4):2080-7. PubMed ID: 26771211
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Soft microelectrode linear array for scanning electrochemical microscopy.
    Cortés-Salazar F; Momotenko D; Lesch A; Wittstock G; Girault HH
    Anal Chem; 2010 Dec; 82(24):10037-44. PubMed ID: 21090683
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improved surface-patterned platinum microelectrodes for the study of exocytotic events.
    Berberian K; Kisler K; Fang Q; Lindau M
    Anal Chem; 2009 Nov; 81(21):8734-40. PubMed ID: 19780579
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spirally oriented Au microelectrode array sensor for detection of Hg (II).
    Huan TN; Hung le Q; Ha VT; Anh NH; Van Khai T; Shim KB; Chung H
    Talanta; 2012 May; 94():284-8. PubMed ID: 22608449
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A comparison of electrochemically pre-treated and spark-platinized carbon fiber microelectrode. Measurement of 8-oxo-7,8-dihydro-2'-deoxyguanosine in human urine and plasma.
    Bartosova Z; Riman D; Halouzka V; Vostalova J; Simanek V; Hrbac J; Jirovsky D
    Anal Chim Acta; 2016 Sep; 935():82-9. PubMed ID: 27543016
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrochemical measurement of quantal exocytosis using microchips.
    Gillis KD; Liu XA; Marcantoni A; Carabelli V
    Pflugers Arch; 2018 Jan; 470(1):97-112. PubMed ID: 28866728
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.