These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 22339586)

  • 21. Sonochemically fabricated microelectrode arrays for use as sensing platforms.
    Collyer SD; Davis F; Higson SP
    Sensors (Basel); 2010; 10(5):5090-132. PubMed ID: 22399926
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Ultrasonic-Aided Fabrication of Nanostructured Au-Ring Microelectrodes for Monitoring Transmitters Released from Single Cells.
    Wang K; Zhao X; Li B; Wang K; Zhang X; Mao L; Ewing A; Lin Y
    Anal Chem; 2017 Sep; 89(17):8683-8688. PubMed ID: 28787575
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Heterogeneous distribution of exocytotic microdomains in adrenal chromaffin cells resolved by high-density diamond ultra-microelectrode arrays.
    Gosso S; Turturici M; Franchino C; Colombo E; Pasquarelli A; Carbone E; Carabelli V
    J Physiol; 2014 Aug; 592(15):3215-30. PubMed ID: 24879870
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Indium Tin Oxide devices for amperometric detection of vesicular release by single cells.
    Meunier A; Fulcrand R; Darchen F; Guille Collignon M; Lemaître F; Amatore C
    Biophys Chem; 2012 Mar; 162():14-21. PubMed ID: 22257976
    [TBL] [Abstract][Full Text] [Related]  

  • 25. An Ultramicroelectrode Electrochemistry and Surface Plasmon Resonance Coupling Method for Cell Exocytosis Study.
    Zhao R; Yan B; Li D; Guo Z; Huang Y; Wang D; Yao X
    Anal Chem; 2024 Jun; 96(25):10228-10236. PubMed ID: 38867346
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Fabrication and characterization of sputtered-carbon microelectrode arrays.
    Sreenivas G; Ang SS; Fritsch I; Brown WD; Gerhardt GA; Woodward DJ
    Anal Chem; 1996 Jun; 68(11):1858-64. PubMed ID: 21619097
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Carbon powder-filled microelectrode: An easy-to-fabricate probe for cellular electrochemistry.
    Tsujimura A; Kamae Y; Kawasaki H; Nagai H; Kano M; Tabata T
    Anal Biochem; 2021 Sep; 629():114316. PubMed ID: 34314725
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Quantitative chemical analysis of single cells.
    Heien ML; Ewing AG
    Methods Mol Biol; 2009; 544():153-62. PubMed ID: 19488699
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Invariance of exocytotic events detected by amperometry as a function of the carbon fiber microelectrode diameter.
    Amatore C; Arbault S; Bouret Y; Guille M; Lemaître F; Verchier Y
    Anal Chem; 2009 Apr; 81(8):3087-93. PubMed ID: 19290664
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Vesicular exocytosis and microdevices - microelectrode arrays.
    Amatore C; Delacotte J; Guille-Collignon M; Lemaître F
    Analyst; 2015 Jun; 140(11):3687-95. PubMed ID: 25803190
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Fabrication of an electrochemical biosensor array for simultaneous detection of L-glutamate and acetylcholine.
    Deng Y; Wang W; Ma C; Li Z
    J Biomed Nanotechnol; 2013 Aug; 9(8):1378-82. PubMed ID: 23926804
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Design, Fabrication, Simulation and Characterization of a Novel Dual-Sided Microelectrode Array for Deep Brain Recording and Stimulation.
    Zhao Z; Gong R; Huang H; Wang J
    Sensors (Basel); 2016 Jun; 16(6):. PubMed ID: 27314356
    [TBL] [Abstract][Full Text] [Related]  

  • 33. 3D-Printed Carbon Electrodes for Neurotransmitter Detection.
    Yang C; Cao Q; Puthongkham P; Lee ST; Ganesana M; Lavrik NV; Venton BJ
    Angew Chem Int Ed Engl; 2018 Oct; 57(43):14255-14259. PubMed ID: 30207021
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Quantification of noise sources for amperometric measurement of quantal exocytosis using microelectrodes.
    Yao J; Gillis KD
    Analyst; 2012 Jun; 137(11):2674-81. PubMed ID: 22540116
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Carbon-Fiber Nanoelectrodes for Real-Time Discrimination of Vesicle Cargo in the Native Cellular Environment.
    Roberts JG; Mitchell EC; Dunaway LE; McCarty GS; Sombers LA
    ACS Nano; 2020 Mar; 14(3):2917-2926. PubMed ID: 32058693
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Fabrication of carbon nanotubes/RGD peptide composites to enhance electrochemical performance of cell chip.
    Cho HY; Eun-Bi-Ko ; Kim TH; Choi JW
    J Biomed Nanotechnol; 2013 Aug; 9(8):1398-402. PubMed ID: 23926807
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Monitoring of dopamine release in single cell using ultrasensitive ITO microsensors modified with carbon nanotubes.
    Shi BX; Wang Y; Zhang K; Lam TL; Chan HL
    Biosens Bioelectron; 2011 Feb; 26(6):2917-21. PubMed ID: 21185713
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A Bidirectional-Current CMOS Potentiostat for Fast-Scan Cyclic Voltammetry Detector Arrays.
    Dorta-Quinones CI; Huang M; Ruelas JC; Delacruz J; Apsel AB; Minch BA; Lindau M
    IEEE Trans Biomed Circuits Syst; 2018 Aug; 12(4):894-903. PubMed ID: 29994774
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Flexible nanohybrid microelectrode based on carbon fiber wrapped by gold nanoparticles decorated nitrogen doped carbon nanotube arrays: In situ electrochemical detection in live cancer cells.
    Zhang Y; Xiao J; Sun Y; Wang L; Dong X; Ren J; He W; Xiao F
    Biosens Bioelectron; 2018 Feb; 100():453-461. PubMed ID: 28963962
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Multiwalled carbon-nanotube-functionalized microelectrode arrays fabricated by microcontact printing: platform for studying chemical and electrical neuronal signaling.
    Fuchsberger K; Le Goff A; Gambazzi L; Toma FM; Goldoni A; Giugliano M; Stelzle M; Prato M
    Small; 2011 Feb; 7(4):524-30. PubMed ID: 21246714
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.