These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

36 related articles for article (PubMed ID: 22339780)

  • 1. DNA methylation differences between stick insect ecotypes.
    de Carvalho CF; Slate J; Villoutreix R; Soria-Carrasco V; Riesch R; Feder JL; Gompert Z; Nosil P
    Mol Ecol; 2023 Dec; 32(24):6809-6823. PubMed ID: 37864542
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exploring context dependency in eco-evolutionary patterns with the stick insect
    Montejo-Kovacevich G; Farkas T; Beckerman A; Nosil P
    Ecol Evol; 2020 Aug; 10(15):8197-8209. PubMed ID: 32788972
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Climatic similarity and genomic background shape the extent of parallel adaptation in Timema stick insects.
    Chaturvedi S; Gompert Z; Feder JL; Osborne OG; Muschick M; Riesch R; Soria-Carrasco V; Nosil P
    Nat Ecol Evol; 2022 Dec; 6(12):1952-1964. PubMed ID: 36280782
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genetic variation within a stick-insect species associated with community-level traits.
    Sinclair-Waters M; Zamorano LS; Gompert Z; Parchman T; Tyukmaeva V; Hopkins DP; Nosil P
    J Evol Biol; 2024 Jun; 37(6):642-652. PubMed ID: 38513126
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transitions between phases of genomic differentiation during stick-insect speciation.
    Riesch R; Muschick M; Lindtke D; Villoutreix R; Comeault AA; Farkas TE; Lucek K; Hellen E; Soria-Carrasco V; Dennis SR; de Carvalho CF; Safran RJ; Sandoval CP; Feder J; Gries R; Crespi BJ; Gries G; Gompert Z; Nosil P
    Nat Ecol Evol; 2017 Feb; 1(4):82. PubMed ID: 28812654
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transcriptome analysis of the endangered dung beetle Copris tripartitus (Coleoptera: Scarabaeidae) and characterization of genes associated to immunity, growth, and reproduction.
    Hwang HJ; Patnaik BB; Baliarsingh S; Patnaik HH; Sang MK; Park JE; Cho HC; Song DK; Jeong JY; Hong CE; Kim YT; Sin HJ; Ziwei L; Park SY; Kang SW; Jeong HC; Park HS; Han YS; Lee YS
    BMC Genomics; 2023 Mar; 24(1):94. PubMed ID: 36864388
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transcriptome analysis in different developmental stages of Batocera horsfieldi (Coleoptera: Cerambycidae) and comparison of candidate olfactory genes.
    Yang H; Cai Y; Zhuo Z; Yang W; Yang C; Zhang J; Yang Y; Wang B; Guan F
    PLoS One; 2018; 13(2):e0192730. PubMed ID: 29474419
    [TBL] [Abstract][Full Text] [Related]  

  • 8. De novo transcriptome analysis and microsatellite marker development for population genetic study of a serious insect pest, Rhopalosiphum padi (L.) (Hemiptera: Aphididae).
    Duan X; Wang K; Su S; Tian R; Li Y; Chen M
    PLoS One; 2017; 12(2):e0172513. PubMed ID: 28212394
    [TBL] [Abstract][Full Text] [Related]  

  • 9. De Novo Transcriptome Analysis of the Common New Zealand Stick Insect Clitarchus hookeri (Phasmatodea) Reveals Genes Involved in Olfaction, Digestion and Sexual Reproduction.
    Wu C; Crowhurst RN; Dennis AB; Twort VG; Liu S; Newcomb RD; Ross HA; Buckley TR
    PLoS One; 2016; 11(6):e0157783. PubMed ID: 27336743
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sequencing and de novo assembly of the transcriptome of the glassy-winged sharpshooter (Homalodisca vitripennis).
    Nandety RS; Kamita SG; Hammock BD; Falk BW
    PLoS One; 2013; 8(12):e81681. PubMed ID: 24339955
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sequencing and de novo assembly of the western tarnished plant bug (Lygus hesperus) transcriptome.
    Hull JJ; Geib SM; Fabrick JA; Brent CS
    PLoS One; 2013; 8(1):e55105. PubMed ID: 23357950
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genome-wide association mapping of phenotypic traits subject to a range of intensities of natural selection in Timema cristinae.
    Comeault AA; Soria-Carrasco V; Gompert Z; Farkas TE; Buerkle CA; Parchman TL; Nosil P
    Am Nat; 2014 May; 183(5):711-27. PubMed ID: 24739202
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Natural selection and divergence in mate preference during speciation.
    Nosil P; Crespi BJ; Gries R; Gries G
    Genetica; 2007 Mar; 129(3):309-27. PubMed ID: 16900317
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Counteracting selective regimes and host preference evolution in ecotypes of two species of walking-sticks.
    Sandoval CP; Nosil P
    Evolution; 2005 Nov; 59(11):2405-13. PubMed ID: 16396181
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular marker systems in insects: current trends and future avenues.
    Behura SK
    Mol Ecol; 2006 Oct; 15(11):3087-113. PubMed ID: 16968257
    [TBL] [Abstract][Full Text] [Related]  

  • 16. De novo characterization of the Timema cristinae transcriptome facilitates marker discovery and inference of genetic divergence.
    Comeault AA; Sommers M; Schwander T; Buerkle CA; Farkas TE; Nosil P; Parchman TL
    Mol Ecol Resour; 2012 May; 12(3):549-61. PubMed ID: 22339780
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Heterogeneous genomic differentiation between walking-stick ecotypes: "isolation by adaptation" and multiple roles for divergent selection.
    Nosil P; Egan SP; Funk DJ
    Evolution; 2008 Feb; 62(2):316-36. PubMed ID: 17999721
    [TBL] [Abstract][Full Text] [Related]  

  • 18.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 19.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 2.