These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 22339856)

  • 1. Stereocilia membrane deformation: implications for the gating spring and mechanotransduction channel.
    Powers RJ; Roy S; Atilgan E; Brownell WE; Sun SX; Gillespie PG; Spector AA
    Biophys J; 2012 Jan; 102(2):201-10. PubMed ID: 22339856
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The local forces acting on the mechanotransduction channel in hair cell stereocilia.
    Powers RJ; Kulason S; Atilgan E; Brownell WE; Sun SX; Barr-Gillespie PG; Spector AA
    Biophys J; 2014 Jun; 106(11):2519-28. PubMed ID: 24896132
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Unconventional mechanics of lipid membranes: a potential role for mechanotransduction of hair cell stereocilia.
    Kim J
    Biophys J; 2015 Feb; 108(3):610-21. PubMed ID: 25650928
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lipid bilayer mediates ion-channel cooperativity in a model of hair-cell mechanotransduction.
    Gianoli F; Risler T; Kozlov AS
    Proc Natl Acad Sci U S A; 2017 Dec; 114(51):E11010-E11019. PubMed ID: 29217640
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Underestimated sensitivity of mammalian cochlear hair cells due to splay between stereociliary columns.
    Nam JH; Peng AW; Ricci AJ
    Biophys J; 2015 Jun; 108(11):2633-47. PubMed ID: 26039165
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sliding adhesion confers coherent motion to hair cell stereocilia and parallel gating to transduction channels.
    Karavitaki KD; Corey DP
    J Neurosci; 2010 Jul; 30(27):9051-63. PubMed ID: 20610739
    [TBL] [Abstract][Full Text] [Related]  

  • 7. cAMP and voltage modulate rat auditory mechanotransduction by decreasing the stiffness of gating springs.
    Mecca AA; Caprara GA; Peng AW
    Proc Natl Acad Sci U S A; 2022 Jul; 119(30):e2107567119. PubMed ID: 35858439
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A mechanical model of stereocilia that demonstrates a shift in the high-sensitivity region due to the interplay of a negative stiffness and an adaptation mechanism.
    Lee C; Park S
    Bioinspir Biomim; 2012 Dec; 7(4):046013. PubMed ID: 23093086
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A mechanical model of the gating spring mechanism of stereocilia.
    Lim K; Park S
    J Biomech; 2009 Sep; 42(13):2158-64. PubMed ID: 19679307
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Glass Probe Stimulation of Hair Cell Stereocilia.
    Peng AW; Ricci AJ
    Methods Mol Biol; 2016; 1427():487-500. PubMed ID: 27259944
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fast recovery of disrupted tip links induced by mechanical displacement of hair bundles.
    Alonso RG; Tobin M; Martin P; Hudspeth AJ
    Proc Natl Acad Sci U S A; 2020 Dec; 117(48):30722-30727. PubMed ID: 33199645
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cyclic nucleotide-gated channel α-3 (CNGA3) interacts with stereocilia tip-link cadherin 23 + exon 68 or alternatively with myosin VIIa, two proteins required for hair cell mechanotransduction.
    Selvakumar D; Drescher MJ; Drescher DG
    J Biol Chem; 2013 Mar; 288(10):7215-29. PubMed ID: 23329832
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanosensory hair cells express two molecularly distinct mechanotransduction channels.
    Wu Z; Grillet N; Zhao B; Cunningham C; Harkins-Perry S; Coste B; Ranade S; Zebarjadi N; Beurg M; Fettiplace R; Patapoutian A; Mueller U
    Nat Neurosci; 2017 Jan; 20(1):24-33. PubMed ID: 27893727
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phosphoinositol-4,5-Bisphosphate Regulates Auditory Hair-Cell Mechanotransduction-Channel Pore Properties and Fast Adaptation.
    Effertz T; Becker L; Peng AW; Ricci AJ
    J Neurosci; 2017 Nov; 37(48):11632-11646. PubMed ID: 29066559
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Forces between clustered stereocilia minimize friction in the ear on a subnanometre scale.
    Kozlov AS; Baumgart J; Risler T; Versteegh CP; Hudspeth AJ
    Nature; 2011 May; 474(7351):376-9. PubMed ID: 21602823
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanotransduction current is essential for stability of the transducing stereocilia in mammalian auditory hair cells.
    Vélez-Ortega AC; Freeman MJ; Indzhykulian AA; Grossheim JM; Frolenkov GI
    Elife; 2017 Mar; 6():. PubMed ID: 28350294
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fate of mammalian cochlear hair cells and stereocilia after loss of the stereocilia.
    Jia S; Yang S; Guo W; He DZ
    J Neurosci; 2009 Dec; 29(48):15277-85. PubMed ID: 19955380
    [TBL] [Abstract][Full Text] [Related]  

  • 18. LHFPL5 is a key element in force transmission from the tip link to the hair cell mechanotransducer channel.
    Beurg M; Schwalbach ET; Fettiplace R
    Proc Natl Acad Sci U S A; 2024 Jan; 121(3):e2318270121. PubMed ID: 38194445
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ultrastructural localization of the likely mechanoelectrical transduction channel protein, transmembrane-like channel 1 (TMC1) during development of cochlear hair cells.
    Mahendrasingam S; Furness DN
    Sci Rep; 2019 Feb; 9(1):1274. PubMed ID: 30718571
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Localisation of the mechanotransducer channels in mammalian cochlear hair cells provides clues to their gating.
    Furness DN; Hackney CM; Evans MG
    J Physiol; 2010 Mar; 588(Pt 5):765-72. PubMed ID: 20026619
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.