BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 22339857)

  • 1. Multiple factors influence calcium synchronization in arterial vasomotion.
    Kapela A; Parikh J; Tsoukias NM
    Biophys J; 2012 Jan; 102(2):211-20. PubMed ID: 22339857
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanisms of cellular synchronization in the vascular wall. Mechanisms of vasomotion.
    Matchkov VV
    Dan Med Bull; 2010 Oct; 57(10):B4191. PubMed ID: 21040688
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differential activation of ion channels by inositol 1,4,5-trisphosphate (IP3)- and ryanodine-sensitive calcium stores in rat basilar artery vasomotion.
    Haddock RE; Hill CE
    J Physiol; 2002 Dec; 545(2):615-27. PubMed ID: 12456838
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A theoretical study on the role of Ca(2+)-activated K+ channels in the regulation of hormone-induced Ca2+ oscillations and their synchronization in adjacent cells.
    Catacuzzeno L; Fioretti B; Franciolini F
    J Theor Biol; 2012 Sep; 309():103-12. PubMed ID: 22659037
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of gap junction to Ca(2+) and to IP(3) on the synchronization of intercellular calcium oscillations in hepatocytes.
    Wu D; Jia Y; Zhan X; Yang L; Liu Q
    Biophys Chem; 2005 Feb; 113(2):145-54. PubMed ID: 15617821
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Antiphase oscillations of endothelium and smooth muscle [Ca2+]i in vasomotion of rat mesenteric small arteries.
    Rahman A; Hughes A; Matchkov V; Nilsson H; Aalkjaer C
    Cell Calcium; 2007 Dec; 42(6):536-47. PubMed ID: 17524481
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Essential role of EDHF in the initiation and maintenance of adrenergic vasomotion in rat mesenteric arteries.
    Mauban JR; Wier WG
    Am J Physiol Heart Circ Physiol; 2004 Aug; 287(2):H608-16. PubMed ID: 15059779
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Activation of endothelial IKCa channels underlies NO-dependent myoendothelial feedback.
    Kerr PM; Wei R; Tam R; Sandow SL; Murphy TV; Ondrusova K; Lunn SE; Tran CHT; Welsh DG; Plane F
    Vascul Pharmacol; 2015 Nov; 74():130-138. PubMed ID: 26362477
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced spontaneous Ca2+ events in endothelial cells reflect signalling through myoendothelial gap junctions in pressurized mesenteric arteries.
    Kansui Y; Garland CJ; Dora KA
    Cell Calcium; 2008 Aug; 44(2):135-46. PubMed ID: 18191200
    [TBL] [Abstract][Full Text] [Related]  

  • 10. TRPV4 (Transient Receptor Potential Vanilloid 4) Channel-Dependent Negative Feedback Mechanism Regulates G
    Hong K; Cope EL; DeLalio LJ; Marziano C; Isakson BE; Sonkusare SK
    Arterioscler Thromb Vasc Biol; 2018 Mar; 38(3):542-554. PubMed ID: 29301784
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ca2+ dynamics in a population of smooth muscle cells: modeling the recruitment and synchronization.
    Koenigsberger M; Sauser R; Lamboley M; Bény JL; Meister JJ
    Biophys J; 2004 Jul; 87(1):92-104. PubMed ID: 15240448
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Vasomotion has chloride-dependency in rat mesenteric small arteries.
    Boedtkjer DM; Matchkov VV; Boedtkjer E; Nilsson H; Aalkjaer C
    Pflugers Arch; 2008 Nov; 457(2):389-404. PubMed ID: 18536933
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hypothesis for the initiation of vasomotion.
    Peng H; Matchkov V; Ivarsen A; Aalkjaer C; Nilsson H
    Circ Res; 2001 Apr; 88(8):810-5. PubMed ID: 11325873
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of cGMP on coordination of vascular smooth muscle cells of rat mesenteric small arteries.
    Rahman A; Matchkov V; Nilsson H; Aalkjaer C
    J Vasc Res; 2005; 42(4):301-11. PubMed ID: 15925896
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sympathetic nerve stimulation induces local endothelial Ca2+ signals to oppose vasoconstriction of mouse mesenteric arteries.
    Nausch LW; Bonev AD; Heppner TJ; Tallini Y; Kotlikoff MI; Nelson MT
    Am J Physiol Heart Circ Physiol; 2012 Feb; 302(3):H594-602. PubMed ID: 22140050
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of voltage-dependent modulation of store Ca2+ release in synchronization of Ca2+ oscillations.
    Imtiaz MS; Katnik CP; Smith DW; van Helden DF
    Biophys J; 2006 Jan; 90(1):1-23. PubMed ID: 16040741
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Type 1 IP3 receptors activate BKCa channels via local molecular coupling in arterial smooth muscle cells.
    Zhao G; Neeb ZP; Leo MD; Pachuau J; Adebiyi A; Ouyang K; Chen J; Jaggar JH
    J Gen Physiol; 2010 Sep; 136(3):283-91. PubMed ID: 20713546
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A mathematical model of vasoreactivity in rat mesenteric arterioles: I. Myoendothelial communication.
    Kapela A; Bezerianos A; Tsoukias NM
    Microcirculation; 2009 Nov; 16(8):694-713. PubMed ID: 19905969
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stimulation of calcium-sensing receptors induces endothelium-dependent vasorelaxations via nitric oxide production and activation of IKCa channels.
    Greenberg HZ; Shi J; Jahan KS; Martinucci MC; Gilbert SJ; Vanessa Ho WS; Albert AP
    Vascul Pharmacol; 2016 May; 80():75-84. PubMed ID: 26772767
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Opening of small and intermediate calcium-activated potassium channels induces relaxation mainly mediated by nitric-oxide release in large arteries and endothelium-derived hyperpolarizing factor in small arteries from rat.
    Stankevicius E; Dalsgaard T; Kroigaard C; Beck L; Boedtkjer E; Misfeldt MW; Nielsen G; Schjorring O; Hughes A; Simonsen U
    J Pharmacol Exp Ther; 2011 Dec; 339(3):842-50. PubMed ID: 21880870
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.