These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
196 related articles for article (PubMed ID: 22339869)
1. pH dependence of the photoactive yellow protein photocycle investigated by time-resolved crystallography. Tripathi S; Srajer V; Purwar N; Henning R; Schmidt M Biophys J; 2012 Jan; 102(2):325-32. PubMed ID: 22339869 [TBL] [Abstract][Full Text] [Related]
2. pH Dependence of the photocycle kinetics of the E46Q mutant of photoactive yellow protein: protonation equilibrium between I1 and I2 intermediates, chromophore deprotonation by hydroxyl uptake, and protonation relaxation of the dark state. Borucki B; Otto H; Joshi CP; Gasperi C; Cusanovich MA; Devanathan S; Tollin G; Heyn MP Biochemistry; 2003 Jul; 42(29):8780-90. PubMed ID: 12873139 [TBL] [Abstract][Full Text] [Related]
3. Controlled reduction of the humidity induces a shortcut recovery reaction in the photocycle of photoactive yellow protein. van der Horst MA; van Stokkum IH; Dencher NA; Hellingwerf KJ Biochemistry; 2005 Jun; 44(25):9160-7. PubMed ID: 15966740 [TBL] [Abstract][Full Text] [Related]
4. A structural pathway for signaling in the E46Q mutant of photoactive yellow protein. Rajagopal S; Anderson S; Srajer V; Schmidt M; Pahl R; Moffat K Structure; 2005 Jan; 13(1):55-63. PubMed ID: 15642261 [TBL] [Abstract][Full Text] [Related]
6. Comprehensive determination of protein tyrosine pKa values for photoactive yellow protein using indirect 13C NMR spectroscopy. Oktaviani NA; Pool TJ; Kamikubo H; Slager J; Scheek RM; Kataoka M; Mulder FA Biophys J; 2012 Feb; 102(3):579-86. PubMed ID: 22325281 [TBL] [Abstract][Full Text] [Related]
7. Proline 54 trans-cis isomerization is responsible for the kinetic partitioning at the last-step photocycle of photoactive yellow protein. Lee BC; Hoff WD Protein Sci; 2008 Dec; 17(12):2101-10. PubMed ID: 18794212 [TBL] [Abstract][Full Text] [Related]
8. Visualizing reaction pathways in photoactive yellow protein from nanoseconds to seconds. Ihee H; Rajagopal S; Srajer V; Pahl R; Anderson S; Schmidt M; Schotte F; Anfinrud PA; Wulff M; Moffat K Proc Natl Acad Sci U S A; 2005 May; 102(20):7145-50. PubMed ID: 15870207 [TBL] [Abstract][Full Text] [Related]
9. Structural role of tyrosine 98 in photoactive yellow protein: effects on fluorescence, gateway, and photocycle recovery. Kyndt JA; Savvides SN; Memmi S; Koh M; Fitch JC; Meyer TE; Heyn MP; Van Beeumen JJ; Cusanovich MA Biochemistry; 2007 Jan; 46(1):95-105. PubMed ID: 17198379 [TBL] [Abstract][Full Text] [Related]
10. Molecular dynamics simulations of photoactive yellow protein (PYP) in three states of its photocycle: a comparison with X-ray and NMR data and analysis of the effects of Glu46 deprotonation and mutation. Antes I; Thiel W; van Gunsteren WF Eur Biophys J; 2002 Dec; 31(7):504-20. PubMed ID: 12451420 [TBL] [Abstract][Full Text] [Related]
11. Confinement in crystal lattice alters entire photocycle pathway of the Photoactive Yellow Protein. Konold PE; Arik E; Weißenborn J; Arents JC; Hellingwerf KJ; van Stokkum IHM; Kennis JTM; Groot ML Nat Commun; 2020 Aug; 11(1):4248. PubMed ID: 32843623 [TBL] [Abstract][Full Text] [Related]
12. Characterization of photocycle intermediates in crystalline photoactive yellow protein. Kort R; Ravelli RB; Schotte F; Bourgeois D; Crielaard W; Hellingwerf KJ; Wulff M Photochem Photobiol; 2003 Aug; 78(2):131-7. PubMed ID: 12945580 [TBL] [Abstract][Full Text] [Related]
13. Watching a signaling protein function in real time via 100-ps time-resolved Laue crystallography. Schotte F; Cho HS; Kaila VR; Kamikubo H; Dashdorj N; Henry ER; Graber TJ; Henning R; Wulff M; Hummer G; Kataoka M; Anfinrud PA Proc Natl Acad Sci U S A; 2012 Nov; 109(47):19256-61. PubMed ID: 23132943 [TBL] [Abstract][Full Text] [Related]
14. New insights into the photocycle of Ectothiorhodospira halophila photoactive yellow protein: photorecovery of the long-lived photobleached intermediate in the Met100Ala mutant. Devanathan S; Genick UK; Canestrelli IL; Meyer TE; Cusanovich MA; Getzoff ED; Tollin G Biochemistry; 1998 Aug; 37(33):11563-8. PubMed ID: 9708992 [TBL] [Abstract][Full Text] [Related]
15. Crystal structure of a photoactive yellow protein from a sensor histidine kinase: conformational variability and signal transduction. Rajagopal S; Moffat K Proc Natl Acad Sci U S A; 2003 Feb; 100(4):1649-54. PubMed ID: 12563032 [TBL] [Abstract][Full Text] [Related]
16. Photoisomerization and proton transfer in photoactive yellow protein. Thompson MJ; Bashford D; Noodleman L; Getzoff ED J Am Chem Soc; 2003 Jul; 125(27):8186-94. PubMed ID: 12837088 [TBL] [Abstract][Full Text] [Related]
17. Photoreversal kinetics of the I1 and I2 intermediates in the photocycle of photoactive yellow protein by double flash experiments with variable time delay. Joshi CP; Borucki B; Otto H; Meyer TE; Cusanovich MA; Heyn MP Biochemistry; 2005 Jan; 44(2):656-65. PubMed ID: 15641791 [TBL] [Abstract][Full Text] [Related]
18. Active-Site pKa Determination for Photoactive Yellow Protein Rationalizes Slow Ground-State Recovery. Oktaviani NA; Pool TJ; Yoshimura Y; Kamikubo H; Scheek RM; Kataoka M; Mulder FAA Biophys J; 2017 May; 112(10):2109-2116. PubMed ID: 28538148 [TBL] [Abstract][Full Text] [Related]
19. Time-resolved single tryptophan fluorescence in photoactive yellow protein monitors changes in the chromophore structure during the photocycle via energy transfer. Otto H; Hoersch D; Meyer TE; Cusanovich MA; Heyn MP Biochemistry; 2005 Dec; 44(51):16804-16. PubMed ID: 16363794 [TBL] [Abstract][Full Text] [Related]
20. Structural heterogeneity of cryotrapped intermediates in the bacterial blue light photoreceptor, photoactive yellow protein. Anderson S; Srajer V; Moffat K Photochem Photobiol; 2004; 80():7-14. PubMed ID: 15339224 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]