BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 22340112)

  • 1. Determination of the absolute fluorescence quantum yield of rhodamine 6G with optical and photoacoustic methods--providing the basis for fluorescence quantum yield standards.
    Würth C; González MG; Niessner R; Panne U; Haisch C; Genger UR
    Talanta; 2012 Feb; 90():30-7. PubMed ID: 22340112
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Integrating sphere setup for the traceable measurement of absolute photoluminescence quantum yields in the near infrared.
    Würth C; Pauli J; Lochmann C; Spieles M; Resch-Genger U
    Anal Chem; 2012 Feb; 84(3):1345-52. PubMed ID: 22242570
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fluorescence lifetimes and quantum yields of rhodamine derivatives: new insights from theory and experiment.
    Savarese M; Aliberti A; De Santo I; Battista E; Causa F; Netti PA; Rega N
    J Phys Chem A; 2012 Jul; 116(28):7491-7. PubMed ID: 22667332
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reevaluation of absolute luminescence quantum yields of standard solutions using a spectrometer with an integrating sphere and a back-thinned CCD detector.
    Suzuki K; Kobayashi A; Kaneko S; Takehira K; Yoshihara T; Ishida H; Shiina Y; Oishi S; Tobita S
    Phys Chem Chem Phys; 2009 Nov; 11(42):9850-60. PubMed ID: 19851565
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of a commercial integrating sphere setup for the determination of absolute photoluminescence quantum yields of dilute dye solutions.
    Würth C; Lochmann C; Spieles M; Pauli J; Hoffmann K; Schüttrigkeit T; Franzl T; Resch-Genger U
    Appl Spectrosc; 2010 Jul; 64(7):733-41. PubMed ID: 20615286
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fluorescence quantum yields of a series of red and near-infrared dyes emitting at 600-1000 nm.
    Rurack K; Spieles M
    Anal Chem; 2011 Feb; 83(4):1232-42. PubMed ID: 21250654
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Validation of fluorescence quantum yields for light-scattering powdered samples by laser-induced optoacoustic spectroscopy.
    Tomasini EP; San Román E; Braslavsky SE
    Langmuir; 2009 May; 25(10):5861-8. PubMed ID: 19374342
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spectroscopic studies of rhodamine 6G dispersed in polymethylcyanoacrylate.
    Saini GS; Kaur S; Tripathi SK; Mahajan CG; Thanga HH; Verma AL
    Spectrochim Acta A Mol Biomol Spectrosc; 2005 Feb; 61(4):653-8. PubMed ID: 15649797
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Eclipsing thermal lens spectroscopy for fluorescence quantum yield measurement.
    Estupiñán-López C; Tolentino Dominguez C; de Araujo RE
    Opt Express; 2013 Jul; 21(15):18592-601. PubMed ID: 23938731
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of silver nano particles on the fluorescence quantum yield of Rhodamine 6G determined using dual beam thermal lens method.
    Santhi A; Umadevi M; Ramakrishnan V; Radhakrishnan P; Nampoori VP
    Spectrochim Acta A Mol Biomol Spectrosc; 2004 Apr; 60(5):1077-83. PubMed ID: 15084326
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spectrofluorimetric determination of trace nitrite with a novel fluorescent probe.
    Liu QH; Yan XL; Guo JC; Wang DH; Li L; Yan FY; Chen LG
    Spectrochim Acta A Mol Biomol Spectrosc; 2009 Sep; 73(5):789-93. PubMed ID: 19501543
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Study of the adsorptive behavior of water-soluble dye molecules (rhodamine 6G) at the air-water interface using confocal fluorescence microscope.
    Zheng XY; Harata A; Ogawa T
    Spectrochim Acta A Mol Biomol Spectrosc; 2001 Feb; 57(2):315-22. PubMed ID: 11206566
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fluorescence spectroscopy of Rhodamine 6G: concentration and solvent effects.
    Zehentbauer FM; Moretto C; Stephen R; Thevar T; Gilchrist JR; Pokrajac D; Richard KL; Kiefer J
    Spectrochim Acta A Mol Biomol Spectrosc; 2014; 121():147-51. PubMed ID: 24239710
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of surfactants on the molecular aggregation of rhodamine dyes in aqueous solutions.
    Tajalli H; Ghanadzadeh Gilani A; Zakerhamidi MS; Moghadam M
    Spectrochim Acta A Mol Biomol Spectrosc; 2009 May; 72(4):697-702. PubMed ID: 19147398
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Fluorescence Properties of Three Rhodamine Dye Analogues: Acridine Red, Pyronin Y and Pyronin B.
    Zhang XF; Zhang J; Lu X
    J Fluoresc; 2015 Jul; 25(4):1151-8. PubMed ID: 26162989
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Diffusion coefficients of several rhodamine derivatives as determined by pulsed field gradient-nuclear magnetic resonance and fluorescence correlation spectroscopy.
    Gendron PO; Avaltroni F; Wilkinson KJ
    J Fluoresc; 2008 Nov; 18(6):1093-101. PubMed ID: 18431548
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Determination of photoluminescence quantum yields of scattering media with an integrating sphere: direct and indirect illumination.
    Würth C; Resch-Genger U
    Appl Spectrosc; 2015 Jun; 69(6):749-59. PubMed ID: 25955619
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of methods and achievable uncertainties for the relative and absolute measurement of photoluminescence quantum yields.
    Würth C; Grabolle M; Pauli J; Spieles M; Resch-Genger U
    Anal Chem; 2011 May; 83(9):3431-9. PubMed ID: 21473570
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Resolution of fluorescence correlation measurements.
    Meseth U; Wohland T; Rigler R; Vogel H
    Biophys J; 1999 Mar; 76(3):1619-31. PubMed ID: 10049342
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evolution of group 14 rhodamines as platforms for near-infrared fluorescence probes utilizing photoinduced electron transfer.
    Koide Y; Urano Y; Hanaoka K; Terai T; Nagano T
    ACS Chem Biol; 2011 Jun; 6(6):600-8. PubMed ID: 21375253
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.