These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
217 related articles for article (PubMed ID: 22340112)
1. Determination of the absolute fluorescence quantum yield of rhodamine 6G with optical and photoacoustic methods--providing the basis for fluorescence quantum yield standards. Würth C; González MG; Niessner R; Panne U; Haisch C; Genger UR Talanta; 2012 Feb; 90():30-7. PubMed ID: 22340112 [TBL] [Abstract][Full Text] [Related]
2. Integrating sphere setup for the traceable measurement of absolute photoluminescence quantum yields in the near infrared. Würth C; Pauli J; Lochmann C; Spieles M; Resch-Genger U Anal Chem; 2012 Feb; 84(3):1345-52. PubMed ID: 22242570 [TBL] [Abstract][Full Text] [Related]
3. Fluorescence lifetimes and quantum yields of rhodamine derivatives: new insights from theory and experiment. Savarese M; Aliberti A; De Santo I; Battista E; Causa F; Netti PA; Rega N J Phys Chem A; 2012 Jul; 116(28):7491-7. PubMed ID: 22667332 [TBL] [Abstract][Full Text] [Related]
4. Reevaluation of absolute luminescence quantum yields of standard solutions using a spectrometer with an integrating sphere and a back-thinned CCD detector. Suzuki K; Kobayashi A; Kaneko S; Takehira K; Yoshihara T; Ishida H; Shiina Y; Oishi S; Tobita S Phys Chem Chem Phys; 2009 Nov; 11(42):9850-60. PubMed ID: 19851565 [TBL] [Abstract][Full Text] [Related]
5. Evaluation of a commercial integrating sphere setup for the determination of absolute photoluminescence quantum yields of dilute dye solutions. Würth C; Lochmann C; Spieles M; Pauli J; Hoffmann K; Schüttrigkeit T; Franzl T; Resch-Genger U Appl Spectrosc; 2010 Jul; 64(7):733-41. PubMed ID: 20615286 [TBL] [Abstract][Full Text] [Related]
6. Fluorescence quantum yields of a series of red and near-infrared dyes emitting at 600-1000 nm. Rurack K; Spieles M Anal Chem; 2011 Feb; 83(4):1232-42. PubMed ID: 21250654 [TBL] [Abstract][Full Text] [Related]
7. Validation of fluorescence quantum yields for light-scattering powdered samples by laser-induced optoacoustic spectroscopy. Tomasini EP; San Román E; Braslavsky SE Langmuir; 2009 May; 25(10):5861-8. PubMed ID: 19374342 [TBL] [Abstract][Full Text] [Related]
8. Spectroscopic studies of rhodamine 6G dispersed in polymethylcyanoacrylate. Saini GS; Kaur S; Tripathi SK; Mahajan CG; Thanga HH; Verma AL Spectrochim Acta A Mol Biomol Spectrosc; 2005 Feb; 61(4):653-8. PubMed ID: 15649797 [TBL] [Abstract][Full Text] [Related]
9. Eclipsing thermal lens spectroscopy for fluorescence quantum yield measurement. Estupiñán-López C; Tolentino Dominguez C; de Araujo RE Opt Express; 2013 Jul; 21(15):18592-601. PubMed ID: 23938731 [TBL] [Abstract][Full Text] [Related]
10. Effect of silver nano particles on the fluorescence quantum yield of Rhodamine 6G determined using dual beam thermal lens method. Santhi A; Umadevi M; Ramakrishnan V; Radhakrishnan P; Nampoori VP Spectrochim Acta A Mol Biomol Spectrosc; 2004 Apr; 60(5):1077-83. PubMed ID: 15084326 [TBL] [Abstract][Full Text] [Related]
11. Spectrofluorimetric determination of trace nitrite with a novel fluorescent probe. Liu QH; Yan XL; Guo JC; Wang DH; Li L; Yan FY; Chen LG Spectrochim Acta A Mol Biomol Spectrosc; 2009 Sep; 73(5):789-93. PubMed ID: 19501543 [TBL] [Abstract][Full Text] [Related]
12. Study of the adsorptive behavior of water-soluble dye molecules (rhodamine 6G) at the air-water interface using confocal fluorescence microscope. Zheng XY; Harata A; Ogawa T Spectrochim Acta A Mol Biomol Spectrosc; 2001 Feb; 57(2):315-22. PubMed ID: 11206566 [TBL] [Abstract][Full Text] [Related]
13. Fluorescence spectroscopy of Rhodamine 6G: concentration and solvent effects. Zehentbauer FM; Moretto C; Stephen R; Thevar T; Gilchrist JR; Pokrajac D; Richard KL; Kiefer J Spectrochim Acta A Mol Biomol Spectrosc; 2014; 121():147-51. PubMed ID: 24239710 [TBL] [Abstract][Full Text] [Related]
14. Effects of surfactants on the molecular aggregation of rhodamine dyes in aqueous solutions. Tajalli H; Ghanadzadeh Gilani A; Zakerhamidi MS; Moghadam M Spectrochim Acta A Mol Biomol Spectrosc; 2009 May; 72(4):697-702. PubMed ID: 19147398 [TBL] [Abstract][Full Text] [Related]
15. The Fluorescence Properties of Three Rhodamine Dye Analogues: Acridine Red, Pyronin Y and Pyronin B. Zhang XF; Zhang J; Lu X J Fluoresc; 2015 Jul; 25(4):1151-8. PubMed ID: 26162989 [TBL] [Abstract][Full Text] [Related]
16. Diffusion coefficients of several rhodamine derivatives as determined by pulsed field gradient-nuclear magnetic resonance and fluorescence correlation spectroscopy. Gendron PO; Avaltroni F; Wilkinson KJ J Fluoresc; 2008 Nov; 18(6):1093-101. PubMed ID: 18431548 [TBL] [Abstract][Full Text] [Related]
17. Determination of photoluminescence quantum yields of scattering media with an integrating sphere: direct and indirect illumination. Würth C; Resch-Genger U Appl Spectrosc; 2015 Jun; 69(6):749-59. PubMed ID: 25955619 [TBL] [Abstract][Full Text] [Related]
18. Comparison of methods and achievable uncertainties for the relative and absolute measurement of photoluminescence quantum yields. Würth C; Grabolle M; Pauli J; Spieles M; Resch-Genger U Anal Chem; 2011 May; 83(9):3431-9. PubMed ID: 21473570 [TBL] [Abstract][Full Text] [Related]