BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 22340123)

  • 1. Mutual recognition of TNT using antibodies polymeric shell having CdS.
    Say R; Büyüktiryaki S; Hür D; Yilmaz F; Ersöz A
    Talanta; 2012 Feb; 90():103-8. PubMed ID: 22340123
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A hybrid quantum dot-antibody fragment fluorescence resonance energy transfer-based TNT sensor.
    Goldman ER; Medintz IL; Whitley JL; Hayhurst A; Clapp AR; Uyeda HT; Deschamps JR; Lassman ME; Mattoussi H
    J Am Chem Soc; 2005 May; 127(18):6744-51. PubMed ID: 15869297
    [TBL] [Abstract][Full Text] [Related]  

  • 3. L-cysteine-capped CdTe QD-based sensor for simple and selective detection of trinitrotoluene.
    Chen Y; Chen Z; He Y; Lin H; Sheng P; Liu C; Luo S; Cai Q
    Nanotechnology; 2010 Mar; 21(12):125502. PubMed ID: 20203361
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Peptide-Functionalized Quantum Dots for Rapid Label-Free Sensing of 2,4,6-Trinitrotoluene.
    Komikawa T; Tanaka M; Tamang A; Evans SD; Critchley K; Okochi M
    Bioconjug Chem; 2020 May; 31(5):1400-1407. PubMed ID: 32281783
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Turn-on and near-infrared fluorescent sensing for 2,4,6-trinitrotoluene based on hybrid (gold nanorod)-(quantum dots) assembly.
    Xia Y; Song L; Zhu C
    Anal Chem; 2011 Feb; 83(4):1401-7. PubMed ID: 21261282
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dummy molecularly imprinted polymers-capped CdTe quantum dots for the fluorescent sensing of 2,4,6-trinitrotoluene.
    Xu S; Lu H; Li J; Song X; Wang A; Chen L; Han S
    ACS Appl Mater Interfaces; 2013 Aug; 5(16):8146-54. PubMed ID: 23876063
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantum dot nanocrystals having guanosine imprinted nanoshell for DNA recognition.
    Diltemiz SE; Say R; Büyüktiryaki S; Hür D; Denizli A; Ersöz A
    Talanta; 2008 May; 75(4):890-6. PubMed ID: 18585161
    [TBL] [Abstract][Full Text] [Related]  

  • 8. One-pot encapsulation of luminescent quantum dots synthesized in aqueous solution by amphiphilic polymers.
    Yuwen L; Bao B; Liu G; Tian J; Lu H; Luo Z; Zhu X; Boey F; Zhang H; Wang L
    Small; 2011 May; 7(10):1456-63. PubMed ID: 21322107
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhancing the photoluminescence of polymer-stabilized CdSe/CdS/ZnS core/shell/shell and CdSe/ZnS core/shell quantum dots in water through a chemical-activation approach.
    Wang M; Zhang M; Qian J; Zhao F; Shen L; Scholes GD; Winnik MA
    Langmuir; 2009 Oct; 25(19):11732-40. PubMed ID: 19788225
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functionalized CdS quantum dots-based luminescence probe for detection of heavy and transition metal ions in aqueous solution.
    Chen J; Zheng A; Gao Y; He C; Wu G; Chen Y; Kai X; Zhu C
    Spectrochim Acta A Mol Biomol Spectrosc; 2008 Mar; 69(3):1044-52. PubMed ID: 17660001
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stability and fluorescence quantum yield of CdSe-ZnS quantum dots--influence of the thickness of the ZnS shell.
    Grabolle M; Ziegler J; Merkulov A; Nann T; Resch-Genger U
    Ann N Y Acad Sci; 2008; 1130():235-41. PubMed ID: 18596353
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced fluorescence sensing of melamine based on thioglycolic acid-capped CdS quantum dots.
    Wang GL; Jiao HJ; Zhu XY; Dong YM; Li ZJ
    Talanta; 2012 May; 93():398-403. PubMed ID: 22483928
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Two-step synthesis of high-quality water-soluble near-infrared emitting quantum dots via amphiphilic polymers.
    Zhao H; Wang D; Zhang T; Chaker M; Ma D
    Chem Commun (Camb); 2010 Aug; 46(29):5301-3. PubMed ID: 20544116
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ultrasensitive cysteine sensing using citrate-capped CdS quantum dots.
    Wang GL; Dong YM; Yang HX; Li ZJ
    Talanta; 2011 Jan; 83(3):943-7. PubMed ID: 21147341
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Proteinous Polymeric Shell Decorated Nanocrystals for the Recognition of Immunoglobulin M.
    Büyüktiryaki S; Yılmaz F; Say R; Ersöz A
    J Fluoresc; 2019 May; 29(3):609-617. PubMed ID: 30963369
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biomolecule-quantum dot systems for bioconjugation applications.
    Mansur HS; González JC; Mansur AA
    Colloids Surf B Biointerfaces; 2011 Jun; 84(2):360-8. PubMed ID: 21353498
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Capping of CdSe-ZnS quantum dots with DHLA and subsequent conjugation with proteins.
    Clapp AR; Goldman ER; Mattoussi H
    Nat Protoc; 2006; 1(3):1258-66. PubMed ID: 17406409
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mesoporous structured MIPs@CDs fluorescence sensor for highly sensitive detection of TNT.
    Xu S; Lu H
    Biosens Bioelectron; 2016 Nov; 85():950-956. PubMed ID: 27315521
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Highly efficient hybrid light-emitting device using complex of CdSe/ZnS quantum dots embedded in co-polymer as an active layer.
    Kang BH; Seo JS; Jeong S; Lee J; Han CS; Kim DE; Kim KJ; Yeom SH; Kwon DH; Kim HR; Kang SW
    Opt Express; 2010 Aug; 18(17):18303-11. PubMed ID: 20721223
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multifunctional conjugates to prepare nucleolar-targeting CdS quantum dots.
    Shen R; Shen X; Zhang Z; Li Y; Liu S; Liu H
    J Am Chem Soc; 2010 Jun; 132(25):8627-34. PubMed ID: 20518506
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.