These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 22340669)

  • 1. Nanofluid impingement jet heat transfer.
    Zeitoun O; Ali M
    Nanoscale Res Lett; 2012 Feb; 7(1):139. PubMed ID: 22340669
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mach number effect on jet impingement heat transfer.
    Brevet P; Dorignac E; Vullierme JJ
    Ann N Y Acad Sci; 2001 May; 934():409-16. PubMed ID: 11460655
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impact of the TiO₂ Nanosolution Concentration on Heat Transfer Enhancement of the Twin Impingement Jet of a Heated Aluminum Plate.
    Faris Abdullah M; Zulkifli R; Harun Z; Abdullah S; Wan Ghopa WA; Soheil Najm A; Humam Sulaiman N
    Micromachines (Basel); 2019 Mar; 10(3):. PubMed ID: 30866409
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Experimental and Numerical Investigation of Flow Structure and Heat Transfer Behavior of Multiple Jet Impingement Using MgO-Water Nanofluids.
    Tang TL; Salleh H; Sadiq MI; Mohd Sabri MA; Ahmad MIM; Ghopa WAW
    Materials (Basel); 2023 May; 16(11):. PubMed ID: 37297077
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of Hybrid Nanofluids Concentration and Swirling Flow on Jet Impingement Cooling.
    Jen Wai O; Gunnasegaran P; Hasini H
    Nanomaterials (Basel); 2022 Sep; 12(19):. PubMed ID: 36234386
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The influence of nanoparticle migration on forced convective heat transfer of nanofluid under heating and cooling regimes.
    Kozlova SV; Ryzhkov II
    Eur Phys J E Soft Matter; 2014 Sep; 37(9):43. PubMed ID: 25260328
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Review on Experimental and Numerical Investigations of Jet Impingement Cooling Performance with Nanofluids.
    Wai OJ; Gunnasegaran P; Hasini H
    Micromachines (Basel); 2022 Nov; 13(12):. PubMed ID: 36557358
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Numerical investigation of Al2O3/water nanofluid laminar convective heat transfer through triangular ducts.
    Zeinali Heris S; Noie SH; Talaii E; Sargolzaei J
    Nanoscale Res Lett; 2011 Feb; 6(1):179. PubMed ID: 21711694
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Investigation of Laminar Convective Heat Transfer for Al₂O₃-Water Nanofluids Flowing through a Square Cross-Section Duct with a Constant Heat Flux.
    Ting HH; Hou SS
    Materials (Basel); 2015 Aug; 8(8):5321-5335. PubMed ID: 28793507
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Turbulent Heat Transfer From a Slot Jet Impinging on a Flat Plate.
    Benmouhoub D; Mataoui A
    J Heat Transfer; 2013 Oct; 135(10):1022011-1022019. PubMed ID: 24895466
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Impact of Surface Roughness on Flow Physics and Entropy Generation in Jet Impingement Applications.
    Alenezi A; Almutairi A; Alhajeri H; Almekmesh SF; Alzuwayer BB
    Entropy (Basel); 2022 May; 24(5):. PubMed ID: 35626546
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Experimental investigation of jet-induced wall pressure fluctuations over a tangential flat plate at two Reynolds numbers.
    Meloni S; Di Marco A; Mancinelli M; Camussi R
    Sci Rep; 2020 Jun; 10(1):9140. PubMed ID: 32499595
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A numerical investigation of the heat transfer characteristics of water-based mango bark nanofluid flowing in a double-pipe heat exchanger.
    Onyiriuka EJ; Ighodaro OO; Adelaja AO; Ewim DRE; Bhattacharyya S
    Heliyon; 2019 Sep; 5(9):e02416. PubMed ID: 31538112
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Numerical Simulation of Swirling Impinging Jet Issuing from a Threaded Hole under Inclined Condition.
    Xu L; Xiong Y; Xi L; Gao J; Li Y; Zhao Z
    Entropy (Basel); 2019 Dec; 22(1):. PubMed ID: 33285790
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Investigation of Heat Transfer and Pressure Drop in Microchannel Heat Sink Using Al
    Khan MZU; Uddin E; Akbar B; Akram N; Naqvi AA; Sajid M; Ali Z; Younis MY; García Márquez FP
    Nanomaterials (Basel); 2020 Sep; 10(9):. PubMed ID: 32916991
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Numerical study of the enhancement of heat transfer for hybrid CuO-Cu Nanofluids flowing in a circular pipe.
    Balla HH; Abdullah S; Mohdfaizal W; Zulkifli R; Sopian K
    J Oleo Sci; 2013; 62(7):533-9. PubMed ID: 23823920
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The surfactants effect on the heat transfer enhancement and stability of nanofluid at constant wall temperature.
    Askar AH; Kadham SA; Mshehid SH
    Heliyon; 2020 Jul; 6(7):e04419. PubMed ID: 32685735
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Convective heat transfer around vertical jet fires: an experimental study.
    Kozanoglu B; Zárate L; Gómez-Mares M; Casal J
    J Hazard Mater; 2011 Dec; 197():104-8. PubMed ID: 21962859
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Heat Transfer and Flow Structures of Laminar Confined Slot Impingement Jet with Power-Law Non-Newtonian Fluid.
    Qiang Y; Wei L; Luo X; Jian H; Wang W; Li F
    Entropy (Basel); 2018 Oct; 20(10):. PubMed ID: 33265887
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Heat transfer enhancement of laminar nanofluids flow in a circular tube fitted with parabolic-cut twisted tape inserts.
    Salman SD; Kadhum AA; Takriff MS; Mohamad AB
    ScientificWorldJournal; 2014; 2014():543231. PubMed ID: 24605055
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.