These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

239 related articles for article (PubMed ID: 22340684)

  • 1. Mechanical behavior of a cellulose-reinforced scaffold in vascular tissue engineering.
    Pooyan P; Tannenbaum R; Garmestani H
    J Mech Behav Biomed Mater; 2012 Mar; 7():50-9. PubMed ID: 22340684
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Porous biocompatible three-dimensional scaffolds of cellulose microfiber/gelatin composites for cell culture.
    Xing Q; Zhao F; Chen S; McNamara J; Decoster MA; Lvov YM
    Acta Biomater; 2010 Jun; 6(6):2132-9. PubMed ID: 20035906
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tissue engineering of annulus fibrosus using electrospun fibrous scaffolds with aligned polycaprolactone fibers.
    Koepsell L; Remund T; Bao J; Neufeld D; Fong H; Deng Y
    J Biomed Mater Res A; 2011 Dec; 99(4):564-75. PubMed ID: 21936046
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bilayered scaffold for engineering cellularized blood vessels.
    Ju YM; Choi JS; Atala A; Yoo JJ; Lee SJ
    Biomaterials; 2010 May; 31(15):4313-21. PubMed ID: 20188414
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A novel three-dimensional tubular scaffold prepared from silk fibroin by electrospinning.
    Zhou J; Cao C; Ma X
    Int J Biol Macromol; 2009 Dec; 45(5):504-10. PubMed ID: 19772871
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Porous polycaprolactone scaffold for cardiac tissue engineering fabricated by selective laser sintering.
    Yeong WY; Sudarmadji N; Yu HY; Chua CK; Leong KF; Venkatraman SS; Boey YC; Tan LP
    Acta Biomater; 2010 Jun; 6(6):2028-34. PubMed ID: 20026436
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Biomaterials and vascular grafts].
    Xiang P; Li M
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2010 Dec; 27(6):1420-4. PubMed ID: 21375008
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Three-dimensional, bioactive, biodegradable, polymer-bioactive glass composite scaffolds with improved mechanical properties support collagen synthesis and mineralization of human osteoblast-like cells in vitro.
    Lu HH; El-Amin SF; Scott KD; Laurencin CT
    J Biomed Mater Res A; 2003 Mar; 64(3):465-74. PubMed ID: 12579560
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Application of collagen composite scaffold in vascular tissue engineering].
    Zhao J; Li M
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2011 Jul; 25(7):859-62. PubMed ID: 21818955
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Carbon nanotube-incorporated multilayered cellulose acetate nanofibers for tissue engineering applications.
    Luo Y; Wang S; Shen M; Qi R; Fang Y; Guo R; Cai H; Cao X; Tomás H; Zhu M; Shi X
    Carbohydr Polym; 2013 Jan; 91(1):419-27. PubMed ID: 23044152
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bacterial cellulose as a potential scaffold for tissue engineering of cartilage.
    Svensson A; Nicklasson E; Harrah T; Panilaitis B; Kaplan DL; Brittberg M; Gatenholm P
    Biomaterials; 2005 Feb; 26(4):419-31. PubMed ID: 15275816
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Scaffolds for tissue engineering and 3D cell culture.
    Carletti E; Motta A; Migliaresi C
    Methods Mol Biol; 2011; 695():17-39. PubMed ID: 21042963
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Progress on scaffold of vascular tissue engineering].
    Xue Z; Li M
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2009 Sep; 23(9):1134-7. PubMed ID: 19817305
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Preliminary results of small arterial substitute performed with a new cylindrical biomaterial composed of bacterial cellulose.
    Wippermann J; Schumann D; Klemm D; Kosmehl H; Salehi-Gelani S; Wahlers T
    Eur J Vasc Endovasc Surg; 2009 May; 37(5):592-6. PubMed ID: 19231251
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vivo application of tissue-engineered blood vessels of bacterial cellulose as small arterial substitutes: proof of concept?
    Scherner M; Reutter S; Klemm D; Sterner-Kock A; Guschlbauer M; Richter T; Langebartels G; Madershahian N; Wahlers T; Wippermann J
    J Surg Res; 2014 Jun; 189(2):340-7. PubMed ID: 24726059
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A novel seamless elastic scaffold for vascular tissue engineering.
    Kim SH; Chung E; Kim SH; Jung Y; Kim YH; Kim SH
    J Biomater Sci Polym Ed; 2010; 21(3):289-302. PubMed ID: 20178686
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fabrication of highly porous tissue-engineering scaffolds using selective spherical porogens.
    Johnson T; Bahrampourian R; Patel A; Mequanint K
    Biomed Mater Eng; 2010; 20(2):107-18. PubMed ID: 20592448
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preparation and characterization of a multilayer biomimetic scaffold for bone tissue engineering.
    Kong L; Ao Q; Wang A; Gong K; Wang X; Lu G; Gong Y; Zhao N; Zhang X
    J Biomater Appl; 2007 Nov; 22(3):223-39. PubMed ID: 17255157
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Solvent-assisted room-temperature compression molding approach to fabricate porous scaffolds for tissue engineering.
    Jing D; Wu L; Ding J
    Macromol Biosci; 2006 Sep; 6(9):747-57. PubMed ID: 16967479
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanical characterization of collagen-glycosaminoglycan scaffolds.
    Harley BA; Leung JH; Silva EC; Gibson LJ
    Acta Biomater; 2007 Jul; 3(4):463-74. PubMed ID: 17349829
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.