These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 22340690)

  • 1. Single and reciprocal friction testing of micropatterned surfaces for orthopedic device design.
    Mitchell N; Eljach C; Lodge B; Sharp JL; Desjardins JD; Kennedy MS
    J Mech Behav Biomed Mater; 2012 Mar; 7():106-15. PubMed ID: 22340690
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tribological behavior of artificial hip joint under the effects of magnetic field in dry and lubricated sliding.
    Zaki M; Aljinaidi A; Hamed M
    Biomed Mater Eng; 2003; 13(3):205-21. PubMed ID: 12883170
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The friction and wear patterns of orthodontic brackets and archwires in the dry state.
    Michelberger DJ; Eadie RL; Faulkner MG; Glover KE; Prasad NG; Major PW
    Am J Orthod Dentofacial Orthop; 2000 Dec; 118(6):662-74. PubMed ID: 11113802
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vitro friction of stainless steel arch wire-bracket combinations in air and different aqueous solutions.
    Al-Khatib S; Berradja A; Celis JP; Willems G
    Orthod Craniofac Res; 2005 May; 8(2):96-105. PubMed ID: 15888122
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Static coefficient of friction between stainless steel and PMMA used in cemented hip and knee implants.
    Nuño N; Groppetti R; Senin N
    Clin Biomech (Bristol, Avon); 2006 Nov; 21(9):956-62. PubMed ID: 16860449
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effects of lubrication on the static frictional resistance of orthodontic brackets.
    Al-Mansouri N; Palmer G; Moles DR; Jones SP
    Aust Orthod J; 2011 Nov; 27(2):132-8. PubMed ID: 22372269
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Wear characteristics of different metal-polyethylene beating surfaces. An experimental study of a new model of knee prosthesis].
    Farizon F; Aurelle JL; Rieu J; Bousquet G
    Rev Chir Orthop Reparatrice Appar Mot; 1996; 82(6):522-8. PubMed ID: 9122523
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Measurement of friction forces between stainless steel wires and "reduced-friction" self-ligating brackets.
    Reznikov N; Har-Zion G; Barkana I; Abed Y; Redlich M
    Am J Orthod Dentofacial Orthop; 2010 Sep; 138(3):330-8. PubMed ID: 20816303
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vitro investigation of friction at the interface between bone and a surgical instrument.
    Parekh J; Shepherd DE; Hukins DW; Hingley C; Maffulli N
    Proc Inst Mech Eng H; 2013 Jun; 227(6):712-8. PubMed ID: 23636757
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Static frictional resistances of polycrystalline ceramic brackets with metal slot inserts.
    Rajakulendran J; Jones S
    Aust Orthod J; 2006 Nov; 22(2):147-52. PubMed ID: 17203579
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biotribological properties at the stem-cement interface lubricated with different media.
    Zhang HY; Luo JB; Zhou M; Zhang Y; Huang YL
    J Mech Behav Biomed Mater; 2013 Apr; 20():209-16. PubMed ID: 23518686
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of stainless steel inserts on the resistance to sliding of esthetic brackets with second-order angulation in the dry and wet states.
    Thorstenson G; Kusy R
    Angle Orthod; 2003 Apr; 73(2):167-75. PubMed ID: 12725373
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tribological behaviour of orthodontic archwires under dry and wet sliding conditions in-vitro. II--Wear patterns.
    Berradja A; Willems G; Celis JP
    Aust Orthod J; 2006 May; 22(1):21-9. PubMed ID: 16792242
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tribological behaviour of orthodontic archwires under dry and wet sliding conditions in-vitro. I--Frictional behaviour.
    Berradja A; Willems G; Celis JP
    Aust Orthod J; 2006 May; 22(1):11-9. PubMed ID: 16792241
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of surface texturing on the performance of biocompatible UHMWPE as a bearing material during in vitro lubricated sliding/rolling motion.
    López-Cervantes A; Domínguez-López I; Barceinas-Sánchez JD; García-García AL
    J Mech Behav Biomed Mater; 2013 Apr; 20():45-53. PubMed ID: 23455163
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The influence of ligation on frictional resistance to sliding during repeated displacement.
    Sirisaowaluk N; Kravchuk O; Ho CT
    Aust Orthod J; 2006 Nov; 22(2):141-6. PubMed ID: 17203578
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of surface treatment and clinical use on friction in NiTi orthodontic wires.
    Wichelhaus A; Geserick M; Hibst R; Sander FG
    Dent Mater; 2005 Oct; 21(10):938-45. PubMed ID: 15923033
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Static frictional force and surface roughness of various bracket and wire combinations.
    Doshi UH; Bhad-Patil WA
    Am J Orthod Dentofacial Orthop; 2011 Jan; 139(1):74-9. PubMed ID: 21195280
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of the frictional coefficients for selected archwire-bracket slot combinations in the dry and wet states.
    Kusy RP; Whitley JQ; Prewitt MJ
    Angle Orthod; 1991; 61(4):293-302. PubMed ID: 1763840
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Resistance to sliding of titanium brackets tested against stainless steel and beta-titanium archwires with second-order angulation in the dry and wet states.
    Whitley JQ; Kusy RP
    Am J Orthod Dentofacial Orthop; 2007 Mar; 131(3):400-11. PubMed ID: 17346598
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.